Do you want to publish a course? Click here

Cosmic Ray Muon Flux at the Sanford Underground Laboratory at Homestake

135   0   0.0 ( 0 )
 Added by Frederick Gray
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Measuring the muon flux is important to the Sanford Underground Laboratory at Homestake, for which several low background experiments are being planned. The nearly-vertical cosmic ray muon flux was measured in three locations at this laboratory: on the surface (1.149 pm 0.017 x 10^-2 cm^-2 s^-1 sr^-1), at the 800-ft (0.712 km w.e.) level (2.67 pm 0.06 x 10^-6 cm^-2 s^-1 sr^-1), and at the 2000-ft (1.78 km w.e.) level (2.56 pm 0.25 x 10^-7 cm^-2 s^-1 sr^-1). These fluxes agree well with model predictions.



rate research

Read More

We report the first measurement of the total MUON flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were done with the Majorana Demonstrator veto system arranged in two different configurations. The measured total flux is (5.31+/-0.17) x 10^-9 muons/s/cm^2.
China Jinping Underground Laboratory (CJPL) is ideal for studying solar-, geo-, and supernova neutrinos. A precise measurement of the cosmic-ray background would play an essential role in proceeding with the R&D research for these MeV-scale neutrino experiments. Using a 1-ton prototype detector for the Jinping Neutrino Experiment (JNE), we detected 264 high-energy muon events from a 645.2-day dataset at the first phase of CJPL (CJPL-I), reconstructed their directions, and measured the cosmic-ray muon flux to be $(3.53pm0.22_{text{stat.}}pm0.07_{text{sys.}})times10^{-10}$ cm$^{-2}$s$^{-1}$. The observed angular distributions indicate the leakage of cosmic-ray muon background and agree with the simulation accounting for Jinping mountains terrain. A survey of muon fluxes at different laboratory locations situated under mountains and below mine shaft indicated that the former is generally a factor of $(4pm2)$ larger than the latter with the same vertical overburden. This study provides a convenient back-of-the-envelope estimation for muon flux of an underground experiment.
53 - M. Robinson 2003
Measurements of cosmic-ray muon rates and energy deposition spectra in a one tonne liquid scintillator detector at 1070 metres vertical depth in the Boulby underground laboratory are discussed. In addition, the simulations used to model the detector are described. The results of the simulations are compared to the experimental data and conclusions given. The muon flux in the laboratory is found to be (4.09+/-0.15)x10^-8 /cm^2/s.
101 - T. Enqvist , A. Mattila , V. Fohr 2005
The cosmic-ray induced muon flux was measured at several depths in the Pyhasalmi mine (Finland) using a plastic scintillator telescope mounted on a trailer. The flux was determined at four different depths underground at 400 m (980 m.w.e), at 660 m (1900 m.w.e), at 990 m (2810 m.w.e) and at 1390 m (3960 m.w.e) with the trailer, and also at the ground surface. In addition, previously measured fluxes from depths of 90 m (210 m.w.e) and 210 m (420 m.w.e) are shown. A relation was obtained for the underground muon flux as a function of the depth. The measured flux follows well the general behaviour and is consistent with results determined in other underground laboratories.
In this work a measurement of the muon intensity at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM, USA is presented. WIPP is a salt mine with a depth of 655 m. The vertical muon flux was measured with a two panels scintillator coincidence setup to Phi_{vert}=3.10(+0.05/-0.07)*10^(-7)s^(-1)cm^(-2)sr^(-1).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا