Do you want to publish a course? Click here

A laser gyroscope system to detect the Gravito-Magnetic effect on Earth

514   0   0.0 ( 0 )
 Added by Angelo Tartaglia
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Large scale square ring laser gyros with a length of four meters on each side are approaching a sensitivity of 1x10^-11 rad/s/sqrt(Hz). This is about the regime required to measure the gravitomagnetic effect (Lense Thirring) of the Earth. For an ensemble of linearly independent gyros each measurement signal depends upon the orientation of each single axis gyro with respect to the rotational axis of the Earth. Therefore at least 3 gyros are necessary to reconstruct the complete angular orientation of the apparatus. In general, the setup consists of several laser gyroscopes (we would prefer more than 3 for sufficient redundancy), rigidly referenced to each other. Adding more gyros for one plane of observation provides a cross-check against intra-system biases and furthermore has the advantage of improving the signal to noise ratio by the square root of the number of gyros. In this paper we analyze a system of two pairs of identical gyros (twins) with a slightly different orientation with respect to the Earth axis. The twin gyro configuration has several interesting properties. The relative angle can be controlled and provides a useful null measurement. A quadruple twin system could reach a 1% sensitivity after 3:2 years of data, provided each square ring has 6 m length on a side, the system is shot noise limited and there is no source for 1/f- noise.



rate research

Read More

We propose an under-ground experiment to detect the general relativistic effects due to the curvature of space-time around the Earth (de Sitter effect) and to rotation of the planet (dragging of the inertial frames or Lense-Thirring effect). It is based on the comparison between the IERS value of the Earth rotation vector and corresponding measurements obtained by a tri-axial laser detector of rotation. The proposed detector consists of six large ring-lasers arranged along three orthogonal axes. In about two years of data taking, the 1% sensitivity required for the measurement of the Lense-Thirring drag can be reached with square rings of 6 $m$ side, assuming a shot noise limited sensitivity ($ 20 prad/s/sqrt{Hz}$). The multi-gyros system, composed of rings whose planes are perpendicular to one or the other of three orthogonal axes, can be built in several ways. Here, we consider cubic and octahedron structures. The symmetries of the proposed configurations provide mathematical relations that can be used to study the stability of the scale factors, the relative orientations or the ring-laser planes, very important to get rid of systematics in long-term measurements, which are required in order to determine the relativistic effects.
We calculate the mass density of the Earth using a Gravito-Electro-Magnetic theory on an extended 5D Schwarzschild-de Sitter metric, in which we define the vacuum. Our results are in very good agreement with that of the Dziewonski-Anderson model.
The sensitivity to angular rotation of the top class Sagnac gyroscope GINGERINO is carefully investigated with standard statistical means, using 103 days of continuous operation and the available geodesic measurements of the Earth angular rotation rate. All features of the Earth rotation rate are correctly reproduced. The sensitivity of fractions of frad/s is attained for long term runs. This excellent sensitivity and stability put Sagnac gyroscopes at the forefront for fundamental physics, in particular for tests of general relativity and Lorentz violation, where the sensitivity plays the key role to provide reliable data for deeper theoretical investigations. The achieved sensitivity overcomes the conventionally expected one for Sagnac ring laser gyroscopes.
We calculate the effect of the Earth-Moon (EM) system on the free-fall motion of LISA test masses. We show that the periodic gravitational pulling of the EM system induces a resonance with fundamental frequency 1 yr^-1 and a series of periodic perturbations with frequencies equal to integer harmonics of the synodic month (9.92 10^-7 Hz). We then evaluate the effects of these perturbations (up to the 6th harmonics) on the relative motions between each test masses couple, finding that they range between 3mm and 10pm for the 2nd and 6th harmonic, respectively. If we take the LISA sensitivity curve, as extrapolated down to 10^-6 Hz, we obtain that a few harmonics of the EM system can be detected in the Doppler data collected by the LISA space mission. This suggests that the EM system gravitational near field could provide an absolute calibration for the LISA sensitivity at very low frequencies.
69 - Niseem Magdy 2017
A charge-sensitive in-event correlator is proposed and tested for its efficacy to detect and characterize charge separation associated with the Chiral Magnetic Effect (CME) in heavy ion collisions. Tests, performed with the aid of two reaction models, indicate discernible responses for background- and CME-driven charge separation, relative to the second- ($Psi_{2}$) and third-order ($Psi_{3}$) event planes, which could serve to identify the CME. The tests also indicate a degree of sensitivity which would enable robust characterization of the CME via Anomalous Viscous Fluid Dynamics (AVFD) model comparisons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا