No Arabic abstract
Any decomposition of the total trajectory entropy production for Markovian systems has a joint probability distribution satisfying a generalized detailed fluctuation theorem, when all the contributing terms are odd with respect to time reversal. The expression of the result does not bring into play dual probability distributions, hence easing potential applications. We show that several fluctuation theorems for perturbed non-equilibrium steady states are unified and arise as particular cases of this general result. In particular, we show that the joint probability distribution of the system and reservoir trajectory entropies satisfy a detailed fluctuation theorem valid for all times although each contribution does not do it separately.
Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and investigated theoretically and experimentally. Significantly, we demonstrate, in the context of Markovian stochastic dynamics, how these different fluctuation theorems arise from a simple fundamental time-reversal symmetry of a certain class of observables. Appealing to the notion of Gibbs entropy allows for a microscopic definition of entropy production in terms of these observables. We work with the master equation approach, which leads to a mathematically straightforward proof and provides direct insight into the probabilistic meaning of the quantities involved. Finally, we point to some experiments that elucidate the practical significance of fluctuation relations.
We study the stochastic thermodynamics of resetting systems. Violation of microreversibility means that the well known derivations of fluctuations theorems break down for dynamics with resetting. Despite that we show that stochastic resetting systems satisfy two integral fluctuation theorems. The first is the Hatano-Sasa relation describing the transition between two steady states. The second integral fluctuation theorem involves a functional that includes both dynamical and thermodynamic contributions. We find that the second law-like inequality found by Fuchs et al. for resetting systems [EPL, 113, (2016)] can be recovered from this integral fluctuation theorem with the help of Jensens inequality.
In recent letter [Phys.~Rev.~Lett {bf 123}, 110602 (2019)], Y.~Hasegawa and T.~V.~Vu derived a thermodynamic uncertainty relation. But the bound of their relation is loose. In this comment, through minor changes, an improved bound is obtained. This improved bound is the same as the one obtained in [Phys.~Rev.~Lett {bf 123}, 090604 (2019)] by A.~M.~Timpanaro {it et. al.}, but the derivation here is straightforward.
Recent research has considered the stochastic thermodynamics of multiple interacting systems, representing the overall system as a Bayes net. I derive fluctuation theorems governing the entropy production (EP)of arbitrary sets of the systems in such a Bayes net. I also derive ``conditional fluctuation theorems, governing the distribution of EP in one set of systems conditioned on the EP of a different set of systems. I then derive thermodynamic uncertainty relations relating the EP of the overall system to the precisions of probability currents within the individual systems.
Here we present a model for a small system combined with an explicit entropy bath that is comparably small. The dynamics of the model is defined by a simple matrix, M. Each row of M corresponds to a macrostate of the system, e.g. net alignment, while the elements in the row represent microstates. The constant number of elements in each row ensures constant entropy, which allows reversible fluctuations, similar to information theory where a constant number of bits allows reversible computations. Many elements in M come from the microstates of the system, but many others come from the bath. Bypassing the bath states yields fluctuations that exhibit standard white noise; whereas with bath states the power spectral density varies as S(f)~1/f over a wide range of frequencies, f. Thus, the explicit entropy bath is the mechanism of 1/f noise in this model. Both forms of the model match Crooks fluctuation theorem exactly, indicating that the theorem applies not only to infinite reservoirs, but also to finite-sized baths. The model is used to analyze measurements of 1/f-like noise from a sub-micron tunnel junction.