Do you want to publish a course? Click here

Query Strategies for Evading Convex-Inducing Classifiers

209   0   0.0 ( 0 )
 Added by Blaine Nelson
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

Classifiers are often used to detect miscreant activities. We study how an adversary can systematically query a classifier to elicit information that allows the adversary to evade detection while incurring a near-minimal cost of modifying their intended malfeasance. We generalize the theory of Lowd and Meek (2005) to the family of convex-inducing classifiers that partition input space into two sets one of which is convex. We present query algorithms for this family that construct undetected instances of approximately minimal cost using only polynomially-many queries in the dimension of the space and in the level of approximation. Our results demonstrate that near-optimal evasion can be accomplished without reverse-engineering the classifiers decision boundary. We also consider general lp costs and show that near-optimal evasion on the family of convex-inducing classifiers is generally efficient for both positive and negative convexity for all levels of approximation if p=1.



rate research

Read More

Classifiers are often used to detect miscreant activities. We study how an adversary can efficiently query a classifier to elicit information that allows the adversary to evade detection at near-minimal cost. We generalize results of Lowd and Meek (2005) to convex-inducing classifiers. We present algorithms that construct undetected instances of near-minimal cost using only polynomially many queries in the dimension of the space and without reverse engineering the decision boundary.
We address the challenge of designing optimal adversarial noise algorithms for settings where a learner has access to multiple classifiers. We demonstrate how this problem can be framed as finding strategies at equilibrium in a two-player, zero-sum game between a learner and an adversary. In doing so, we illustrate the need for randomization in adversarial attacks. In order to compute Nash equilibrium, our main technical focus is on the design of best response oracles that can then be implemented within a Multiplicative Weights Update framework to boost deterministic perturbations against a set of models into optimal mixed strategies. We demonstrate the practical effectiveness of our approach on a series of image classification tasks using both linear classifiers and deep neural networks.
We present a method for provably defending any pretrained image classifier against $ell_p$ adversarial attacks. This method, for instance, allows public vision API providers and users to seamlessly convert pretrained non-robust classification services into provably robust ones. By prepending a custom-trained denoiser to any off-the-shelf image classifier and using randomized smoothing, we effectively create a new classifier that is guaranteed to be $ell_p$-robust to adversarial examples, without modifying the pretrained classifier. Our approach applies to both the white-box and the black-box settings of the pretrained classifier. We refer to this defense as denoised smoothing, and we demonstrate its effectiveness through extensive experimentation on ImageNet and CIFAR-10. Finally, we use our approach to provably defend the Azure, Google, AWS, and ClarifAI image classification APIs. Our code replicating all the experiments in the paper can be found at: https://github.com/microsoft/denoised-smoothing.
Learning-based systems have been shown to be vulnerable to evasion through adversarial data manipulation. These attacks have been studied under assumptions that the adversary has certain knowledge of either the target model internals, its training dataset or at least classification scores it assigns to input samples. In this paper, we investigate a much more constrained and realistic attack scenario wherein the target classifier is minimally exposed to the adversary, revealing on its final classification decision (e.g., reject or accept an input sample). Moreover, the adversary can only manipulate malicious samples using a blackbox morpher. That is, the adversary has to evade the target classifier by morphing malicious samples in the dark. We present a scoring mechanism that can assign a real-value score which reflects evasion progress to each sample based on the limited information available. Leveraging on such scoring mechanism, we propose an evasion method -- EvadeHC -- and evaluate it against two PDF malware detectors, namely PDFRate and Hidost. The experimental evaluation demonstrates that the proposed evasion attacks are effective, attaining $100%$ evasion rate on the evaluation dataset. Interestingly, EvadeHC outperforms the known classifier evasion technique that operates based on classification scores output by the classifiers. Although our evaluations are conducted on PDF malware classifier, the proposed approaches are domain-agnostic and is of wider application to other learning-based systems.
Many differentially private algorithms for answering database queries involve a step that reconstructs a discrete data distribution from noisy measurements. This provides consistent query answers and reduces error, but often requires space that grows exponentially with dimension. Private-PGM is a recent approach that uses graphical models to represent the data distribution, with complexity proportional to that of exact marginal inference in a graphical model with structure determined by the co-occurrence of variables in the noisy measurements. Private-PGM is highly scalable for sparse measurements, but may fail to run in high dimensions with dense measurements. We overcome the main scalability limitation of Private-PGM through a principled approach that relaxes consistency constraints in the estimation objective. Our new approach works with many existing private query answering algorithms and improves scalability or accuracy with no privacy cost.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا