Spin glassiness and power law scaling in a quasi-triangular spin-1/2 compound


Abstract in English

We present data on the magnetic properties of two classes of layered spin S=1/2 antiferromagnetic quasi-triangular lattice materials: $Cu_{2(1-x)}Zn_{2x}(OH)_3NO_3$ ($0 < x < 0.65$) and its long chain organic derivatives $Cu_{2(1-x)}Zn_{2x}(OH)_3(C_7H_{15}COO)cdot mH_2O$ ($0 < x < 0.29$), where non-magnetic Zn substitutes Cu isostructurally. It is found that the long-chain compounds, even in a clean system in the absence of dilution, $x!=!0$, show spin-glass behavior, as evidenced by DC and AC susceptibility, and by time dependent magnetization measurements. A striking feature is the observation of a sharp crossover between two successive power law regimes in the DC susceptibility above the freezing temperature. Specific heat data are consistent with a conventional phase transition in the unintercalated compounds, and glassy behavior in the long chain compunds.

Download