Do you want to publish a course? Click here

The Earth as an extrasolar transiting planet: Earths atmospheric composition and thickness revealed by Lunar eclipse observations

215   0   0.0 ( 0 )
 Added by David Ehrenreich
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

An important goal within the quest for detecting an Earth-like extrasolar planet, will be to identify atmospheric gaseous bio-signatures. Observations of the light transmitted through the Earths atmosphere, as for an extrasolar planet, will be the first step for future comparisons. We have completed observations of the Earth during a Lunar eclipse, a unique situation similar to that of a transiting planet. We aim at showing what species could be detected in its atmosphere at optical wavelengths, where a lot of photons are available in the masked stellar light. We present observations of the 2008 August 16 Moon eclipse performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence. Locating the spectrograph fibers in the penumbra of the eclipse, the Moon irradiance is then a mix of direct, unabsorbed Sun light and solar light that has passed through the Earths limb. This mixture essentially reproduces what is recorded during the transit of an extrasolar planet. We report here the clear detection of several Earth atmospheric compounds in the transmission spectra, such as ozone, molecular oxygen, and neutral sodium as well as molecular nitrogen and oxygen through the Rayleigh signature. Moreover, we present a method that allows us to derive the thickness of the atmosphere versus the wavelength for penumbra eclipse observations. We quantitatively evaluate the altitude at which the atmosphere becomes transparent for important species like molecular oxygen and ozone, two species thought to be tightly linked to the presence of life. The molecular detections presented here are an encouraging first attempt, necessary to better prepare for the future of extremely-large telescopes and transiting Earth-like planets. Instruments like SOPHIE will be mandatory when characterizing the atmospheres of transiting Earth-like planets from the ground and searching for bio-marker signatures.



rate research

Read More

With the rapid developments in the exoplanet field, more and more terrestrial exoplanets are being detected. Characterising their atmospheres using transit observations will become a key datum in the quest for detecting an Earth-like exoplanet. The atmospheric transmission spectrum of our Earth will be an ideal template for comparison with future exo-Earth candidates. By observing a lunar eclipse, which offers a similar configuration to that of an exoplanet transit, we have obtained a high resolution and high signal-to-noise ratio transmission spectrum of the Earths atmosphere. This observation was performed with the High Resolution Spectrograph at Xinglong Station, China during the total lunar eclipse in December 2011. We compare the observed transmission spectrum with our atmospheric model, and determine the characteristics of the various atmospheric species in detail. In the transmission spectrum, O2, O3, O2-O2, NO2 and H2O are detected, and their column densities are measured and compared with the satellites data. The visible Chappuis band of ozone produces the most prominent absorption feature, which suggests that ozone is a promising molecule for the future exo-Earth characterization. The individual O2 lines are resolved and O2 isotopes are clearly detected. Our new observations do not confirm the absorption features of Ca II or Na I which have been reported in previous lunar eclipse observations. However, features in these and some other strong Fraunhofer line positions do occur in the observed spectrum. We propose that these are due to a Raman-scattered component in the forward-scattered sunlight appearing in the lunar umbral spectrum. Water vapour absorption is found to be rather weak in our spectrum because the atmosphere we probed is relatively dry, which prompts us to discuss the detectability of water vapour in Earth-like exoplanet atmospheres.
146 - Enric Palle 2009
Of the 342 planets discovered so far orbiting other stars, 58 transit the stellar disk, meaning that they can be detected by a periodic decrease in the starlight flux. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration toward the characterization of exoplanetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflected spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the fingerprints of the Earths ionosphere and of the major atmospheric constituent, diatomic nitrogen (N2), which are missing in the reflected spectrum.
224 - Luc Arnold 2009
The so-called Vegetation Red-Edge (VRE), a sharp increase in the reflectance around $700 nm$, is a characteristic of vegetation spectra, and can therefore be used as a biomarker if it can be detected in an unresolved extrasolar Earth-like planet integrated reflectance spectrum. Here we investigate the potential for detection of vegetation spectra during the last Quaternary climatic extrema, the Last Glacial Maximum (LGM) and the Holocene optimum, for which past climatic simulations have been made. By testing the VRE detectability during these extrema when Earths climate and biomes maps were different from today, we are able to test the vegetation detectability on a terrestrial planet different from our modern Earth. Data from the Biome3.5 model have been associated to visible GOME spectra for each biome and cloud cover to derive Earths integrated spectra for given Earth phases and observer positions. The VRE is then measured. Results show that the vegetation remains detectable during the last climatic extrema. Compared to current Earth, the Holocene optimum with a greener Sahara slightly increases the mean VRE on one hand, while on the other hand, the large ice cap over the northern Hemisphere during the LGM decreases vegetation detectability. We finally discuss the detectability of the VRE in the context of recently proposed space missions.
We present a retrieval method based on Bayesian analysis to infer the atmospheric compositions and surface or cloud-top pressures from transmission spectra of exoplanets with general compositions. In this study, we identify what can unambiguously be determined about the atmospheres of exoplanets from their transmission spectra by applying the retrieval method to synthetic observations of the super-Earth GJ 1214b. Our approach to infer constraints on atmospheric parameters is to compute their joint and marginal posterior probability distributions using the MCMC technique in a parallel tempering scheme. A new atmospheric parameterization is introduced that is applicable to general atmospheres in which the main constituent is not known a priori and clouds may be present. Our main finding is that a unique constraint of the mixing ratios of the absorbers and up to two spectrally inactive gases (such as N2 and primordial H2+He) is possible if the observations are sufficient to quantify both (1) the broadband transit depths in at least one absorption feature for each absorber and (2) the slope and strength of the molecular Rayleigh scattering signature. The surface or cloud-top pressure can be quantified if a surface or cloud deck is present. The mean molecular mass can be constrained from the Rayleigh slope or the shapes of absorption features, thus enabling to distinguish between cloudy hydrogen-rich atmospheres and high mean molecular mass atmospheres. We conclude, however, that without the signature of Rayleigh scattering--even with robustly detected infrared absorption features--there is no reliable way to tell if the absorber is the main constituent of the atmosphere or just a minor species with a mixing ratio of <0.1%. The retrieval method leads us to a conceptual picture of which details in transmission spectra are essential for unique characterizations of well-mixed atmospheres.
107 - Y. Betremieux MPIA 2013
Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density and pressure, probed during primary eclipses, as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction for all exoplanets, and tabulate the critical altitude, density and pressure for an exoplanet identical to Earth with a 1 bar N2/O2 atmosphere, as a function of both the incident stellar flux (Venus, Earth, and Mars-like) at the top of the atmosphere, and the spectral type (O5-M9) of the host star. We show that such a habitable exo-Earth can be probed to a surface pressure of 1 bar only around the coolest stars. We present 0.4-5.0 micron model transmission spectra of Earths atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا