Superlattice of resonators on monolayer graphene created by intercalated gold nanoclusters


Abstract in English

Here we report on a new type of ordering which allows to modify the electronic structure of a graphene monolayer (ML). We have intercalated small gold clusters between the top monolayer graphene and the buffer layer of epitaxial graphene. We show that these clusters perturb the quasiparticles on the ML graphene, and act as quantum dots creating a superlattice of resonators on the graphene ML, as revealed by a strong pattern of standing waves. A detailed analysis of the standing wave patterns using Fourier Transform Scanning Tunneling Spectroscopy strongly indicates that this phenomenon can arise from a strong modification of the band structure of graphene and (or) from Charge Density Waves (CDW)where a large extension of Van Hove singularities are involved.

Download