Do you want to publish a course? Click here

Constraining the regular Galactic Magnetic Field with the 5-year WMAP polarization measurements at 22 GHz

124   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

[ABRIDGED] The knowledge of the regular component of the Galactic magnetic field gives important information about the structure and dynamics of the Milky Way, as well as constitutes a basic tool to determine cosmic rays trajectories. It can also provide clear windows where primordial magnetic fields could be detected. We want to obtain the regular (large scale) pattern of the magnetic field distribution of the Milky Way that better fits the polarized synchrotron emission as seen by the 5-year WMAP data at 22 GHz. We have done a systematic study of a number of Galactic magnetic field models: axisymmetric, bisymmetric, logarithmic spiral arms, concentric circular rings with reversals and bi-toroidal. We have explored the parameter space defining each of these models using a grid-based approach. In total, more than one million models are computed. The model selection is done using a Bayesian approach. For each model, the posterior distributions are obtained and marginalised over the unwanted parameters to obtain the marginal 1-D probability distribution functions. In general, axisymmetric models provide a better description of the halo component, although attending to their goodness-of-fit, the rest of the models cannot be rejected. In the case of disk component, the analysis is not very sensitive for obtaining the disk large scale structure, because of the effective available area (less than 8% of the whole map and less than 40% of the disk). Nevertheless, within a given family of models, the best-fit parameters are compatible with those found in the literature. The family of models that better describes the polarized synchrotron halo emission is the axisymmetric one, with magnetic spiral arms with a pitch angle of ~24 degrees, and a strong vertical field of 1 microG at z ~ 1 kpc. When a radial variation is fitted, models require fast variations.



rate research

Read More

We present a Gaussianity analysis of the WMAP 5-year Cosmic Microwave Background (CMB) temperature anisotropy data maps. We use several third order estimators based on the spherical Mexican hat wavelet. We impose constraints on the local non-linear coupling parameter fnl using well motivated non-Gaussian simulations. We analyse the WMAP maps at resolution of 6.9 arcmin for the Q, V, and W frequency bands. We use the KQ75 mask recommended by the WMAP team which masks out 28% of the sky. The wavelet coefficients are evaluated at 10 different scales from 6.9 to 150 arcmin. With these coefficients we compute the third order estimators which are used to perform a chi-squared analysis. The chi-squared statistic is used to test the Gaussianity of the WMAP data as well as to constrain the fnl parameter. Our results indicate that the WMAP data are compatible with the Gaussian simulations, and the fnl parameter is constrained to -8 < fnl < +111 at 95% CL for the combined V+W map. This value has been corrected for the presence of undetected point sources, which add a positive contribution of Delta_fnl = 3+-5 in the V+W map. Our results are very similar to those obtained by Komatsu et al (2008) using the bispectrum.
We analyse WMAP 7-year temperature data, jointly modeling the cosmic microwave background (CMB) and Galactic foreground emission. We use the Commander code based on Gibbs sampling. Thus, from the WMAP7 data, we derive simultaneously the CMB and Galactic components on scales larger than 1deg with sensitivity improved relative to previous work. We conduct a detailed study of the low-frequency foreground with particular focus on the microwave haze emission around the Galactic center. We demonstrate improved performance in quantifying the diffuse galactic emission when Haslam 408MHz data are included together with WMAP7, and the spinning and thermal dust emission is modeled jointly. We also address the question of whether the hypothetical galactic haze can be explained by a spatial variation of the synchrotron spectral index. The excess of emission around the Galactic center appears stable with respect to variations of the foreground model that we study. Our results demonstrate that the new galactic foreground component - the microwave haze - is indeed present.
Using the Westerbork Synthesis Radio Telescope (WSRT), we obtained high-time-resolution measurements of the full (linear and circular) polarization of the Crab pulsar. Taken at a resolution of 1/8192 of the 34-ms pulse period (i.e., $4.1~mu{rm s}$), the 1.38-GHz linear-polarization measurements are in general agreement with previous lower-time-resolution 1.4-GHz measurements of linear polarization in the main pulse (MP), in the interpulse (IP), and in the low-frequency component (LFC). We find the MP and IP to be linearly polarized at about $24%$ and $21%$, with no discernible difference in polarization position angle. However, and contrary to theoretical expectations and measurements in the visible, we find no evidence for significant variation (sweep) in polarization position angle over the MP, the IP, or the LFC. Although, the main pulse exhibits a small but statistically significant quadratic variation in the degree of linear polarization. We discuss the implications which appear to be in contradiction to theoretical expectations. In addition, we detect weak circular polarization in the main pulse and interpulse, and strong ($approx 20%$) circular polarization in the low-frequency component, which also exhibits very strong ($approx 98%$) linear polarization at a position angle about $40degree$ from that of the MP or IP. The pulse-mean polarization properties are consistent with the LFC being a low-altitude component and the MP and IP being high-altitude caustic components. Nevertheless, current models for the MP and IP emission do not readily account for the observed absence of pronounced polarization changes across the pulse. Finally, we measure IP and LFC pulse phases relative to the MP that are consistent with recent measurements, which have shown that the phases of these pulse components are evolving with time.
We present polarization observations of two Galactic plane fields centered on Galactic coordinates (l,b)=(0 deg,0 deg) and (329 deg, 0 deg) at Q- (43 GHz) and W-band (95 GHz), covering between 301 and 539 square degrees depending on frequency and field. These measurements were made with the QUIET instrument between 2008 October and 2010 December, and include a total of 1263 hours of observations. The resulting maps represent the deepest large-area Galactic polarization observations published to date at the relevant frequencies with instrumental rms noise varying between 1.8 and 2.8 uK deg, 2.3-6 times deeper than corresponding WMAP and Planck maps. The angular resolution is 27.3 and 12.8 FWHM at Q- and W-band, respectively. We find excellent agreement between the QUIET and WMAP maps over the entire fields, and no compelling evidence for significant residual instrumental systematic errors in either experiment, whereas the Planck 44 GHz map deviates from these in a manner consistent with reported systematic uncertainties for this channel. We combine QUIET and WMAP data to compute inverse-variance-weighted average maps, effectively retaining small angular scales from QUIET and large angular scales from WMAP. From these combined maps, we derive constraints on several important astrophysical quantities, including a robust detection of polarized synchrotron spectral index steepening of ~0.2 off the plane, as well as the Faraday rotation measure toward the Galactic center (RM=-4000 +/- 200 rad m^-2), all of which are consistent with previously published results. Both the raw QUIET and the co-added QUIET+WMAP maps are made publicly available together with all necessary ancillary information.
140 - Carl Shneider 2014
We employ an analytical model that incorporates both wavelength-dependent and wavelength-independent depolarization to describe radio polarimetric observations of polarization at $lambda lambda lambda , 3.5, 6.2, 20.5$ cm in M51 (NGC 5194). The aim is to constrain both the regular and turbulent magnetic field strengths in the disk and halo, modeled as a two- or three-layer magneto-ionic medium, via differential Faraday rotation and internal Faraday dispersion, along with wavelength-independent depolarization arising from turbulent magnetic fields. A reduced chi-squared analysis is used for the statistical comparison of predicted to observed polarization maps to determine the best-fit magnetic field configuration at each of four radial rings spanning $2.4 - 7.2$ kpc in $1.2$ kpc increments. We find that a two-layer modeling approach provides a better fit to the observations than a three-layer model, where the near and far sides of the halo are taken to be identical, although the resulting best-fit magnetic field strengths are comparable. This implies that all of the signal from the far halo is depolarized at these wavelengths. We find a total magnetic field in the disk of approximately $18~mu$G and a total magnetic field strength in the halo of $sim 4-6~mu$G. Both turbulent and regular magnetic field strengths in the disk exceed those in the halo by a factor of a few. About half of the turbulent magnetic field in the disk is anisotropic, but in the halo all turbulence is only isotropic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا