The goal of this article is to study results and examples concerning finitely presented covers of finitely generated amenable groups. We collect examples of groups $G$ with the following properties: (i) $G$ is finitely generated, (ii) $G$ is amenable, e.g. of intermediate growth, (iii) any finitely presented group $E$ with a quotient isomorphic to $G$ contains non-abelian free subgroups, or the stronger (iii) any finitely presented group with a quotient isomorphic to $G$ is large.
We define a notion of uniform density on translation bounded measures in unimodular amenable locally compact Hausdorff groups, which is based on a group invariant introduced by Leptin in 1966. We show that this density notion coincides with the well-known Banach density. We use Leptin densities for a new geometric proof of the model set density formula, which expresses the density of a uniform regular model set in terms of the volume of its window, and for a proof of uniform mean almost periodicity of such model sets.
Suppose an amenable group $G$ is acting freely on a simply connected simplicial complex $tilde X$ with compact quotient $X$. Fix $n geq 1$, assume $H_n(tilde X, mathbb{Z})=0$ and let $(H_i)$ be a Farber chain in $G$. We prove that the torsion of the integral homology in dimension $n$ of $tilde{X}/H_i$ grows subexponentially in $[G:H_i]$. By way of contrast, if $X$ is not compact, there are solvable groups of derived length 3 for which torsion in homology can grow faster than any given function.
Let $X$ be a locally compact Hadamard space and $G$ be a totally disconnected group acting continuously, properly and cocompactly on $X$. We show that a closed subgroup of $G$ is amenable if and only if it is (topologically locally finite)-by-(virtually abelian). We are led to consider a set $bdfine X$ which is a refinement of the visual boundary $bd X$. For each $x in bdfine X$, the stabilizer $G_x$ is amenable.
The Cohn-Umans group-theoretic approach to matrix multiplication suggests embedding matrix multiplication into group algebra multiplication, and bounding $omega$ in terms of the representation theory of the host group. This framework is general enough to capture the best known upper bounds on $omega$ and is conjectured to be powerful enough to prove $omega = 2$, although finding a suitable group and constructing such an embedding has remained elusive. Recently it was shown, by a generalization of the proof of the Cap Set Conjecture, that abelian groups of bounded exponent cannot prove $omega = 2$ in this framework, which ruled out a family of potential constructions in the literature. In this paper we study nonabelian groups as potential hosts for an embedding. We prove two main results: (1) We show that a large class of nonabelian groups---nilpotent groups of bounded exponent satisfying a mild additional condition---cannot prove $omega = 2$ in this framework. We do this by showing that the shrinkage rate of powers of the augmentation ideal is similar to the shrinkage rate of the number of functions over $(mathbb{Z}/pmathbb{Z})^n$ that are degree $d$ polynomials; our proof technique can be seen as a generalization of the polynomial method used to resolve the Cap Set Conjecture. (2) We show that symmetric groups $S_n$ cannot prove nontrivial bounds on $omega$ when the embedding is via three Young subgroups---subgroups of the form $S_{k_1} times S_{k_2} times dotsb times S_{k_ell}$---which is a natural strategy that includes all known constructions in $S_n$. By developing techniques for negative results in this paper, we hope to catalyze a fruitful interplay between the search for constructions proving bounds on $omega$ and methods for ruling them out.