Do you want to publish a course? Click here

Emergence Of Ferromagnetism In Nanoparticles Of Antiferromagnetic Nd0.4Sr0.6MnO3

159   0   0.0 ( 0 )
 Added by Sourav Kundu
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the magnetic state of Nd0.4Sr0.6MnO3 with the variation of its grain size down to average nanometric diameter (40 nm). The bulk sample is antiferromagnetic (AFM) in nature. However, on reduction of the grain size, emergence of ferromagnetic behavior is experimentally observed. Linear and nonlinear ac magnetic susceptibility measurements reveal that ferromagnetic nature is enhanced as the grain size is reduced. Large coercivity and bifurcation between zero field cooled and field cooled magnetization curves indicate an intrinsic disorder and large anisotropy in the system. Observed behaviors are attributed to surface disorder as well as to possible pressure effect on nano grains.

rate research

Read More

We demonstrate that delta-doping can be used to create a dimensionally confined region of metallic ferromagnetism in an antiferromagnetic (AF) manganite host, without introducing any explicit disorder due to dopants or frustration of spins. Delta-doped carriers are inserted into a manganite superlattice (SL) by a digital-synthesis technique. Theoretical consideration of these additional carriers show that they cause a local enhancement of ferromagnetic (F) double-exchange with respect to AF superexchange, resulting in local canting of the AF spins. This leads to a highly modulated magnetization, as measured by polarized neutron reflectometry. The spatial modulation of the canting is related to the spreading of charge from the doped layer, and establishes a fundamental length scale for charge transfer, transformation of orbital occupancy and magnetic order in these manganites. Furthermore, we confirm the existence of the canted, AF state as was predicted by de Gennes [P.-G. de Gennes, Phys. Rev. 118, 141 (1960)], but had remained elusive.
94 - S. Kundu , T. K. Nath 2013
Detailed dc and ac magnetic properties of chemically synthesized Nd0.4Sr0.6MnO3 with different particle size (down to 27 nm) have been studied in details. We have found ferromagnetic state in the nanoparticles, whereas, the bulk Nd0.4Sr0.6MnO3 is known to be an A-type antiferromagnet. A Griffiths-like phase has also been identified in the nanoparticles. Further, critical behavior of the nanoparticles has been studied around the second order ferromagnetic-paramagnetic transition region (|(T-TC)/TC|{pounds} 0.04) in terms of modified Arrott plot, Kouvel-Fisher plot and critical isotherm analysis. The estimated critical exponents (b,g,d) are quite different from those predicted according to three-dimensional mean-field, Heisenberg and Ising models. This signifies a quite unusual nature of the size-induced ferromagnetic state in Nd0.4Sr0.6MnO3. The nanoparticles are found to be interacting and do not behave like ideal superparamagnet. Interestingly, we find spin glass like slow relaxation of magnetization, aging and memory effect in the nanometric samples. These phenomena have been attributed to very broad distribution of relaxation time as well as to inter-particle interaction. Experimentally, we have found out that the dynamics of the nanoparticle systems can be best described by hierarchical model of spin glasses.
The emergence of a ferromagnetic component in $LaMnO_{3}$ with low Cr-for-Mn substitution has been studied by x-ray absorption spectroscopy and x-ray magnetic circular dichroism at the Mn and Cr K edges. The local magnetic moment strength for the Mn and Cr are proportional to each other and follows the macroscopic magnetization. The net ferromagnetic components of $Cr^{3+}$ and $Mn^{3+}$ are found antiferromagnetically coupled. Unlike hole doping by La site substitution, the inclusion of $Cr^{3+}$ ions up to x = 0.15 does not decrease the Jahn-Teller (JT) distortion and consequently does not significantly affect the orbital ordering. This demonstrates that the emergence of the ferromagnetism is not related to JT weakening and likely arises from a complex orbital mixing.
The fascinating phenomenon of destabilization of charge/orbital order in Nd0.5Sr0.5MnO3 with the reduction of grain size is critically investigated. Based on our magnetic and transport experiments followed by a theoretical analysis, we analyze various possible mechanisms and try to delineate a universal scenario behind this phenomenon. We, revisit this issue and discuss the overwhelming evidence from experiments on nano and bulk manganites as well as the absence of correlation between size reduction and pressure effects on manganites. We propose a phenomenological understanding on the basis of enhanced surface disorder to explain the appearance of weak ferromagnetism and metallicity in nanoparticles of Nd0.5Sr0.5MnO3. We also provide supportive evidence from an ab-initio electron structure calculation and a recent numerical simulation and argue that the mechanism is universal in all nanosize charge ordered manganites.
We study the antiferromagnetic quantum critical metal in $3-epsilon$ space dimensions by extending the earlier one-loop analysis [Sur and Lee, Phys. Rev. B 91, 125136 (2015)] to higher-loop orders. We show that the $epsilon$-expansion is not organized by the standard loop expansion, and a two-loop graph becomes as important as one-loop graphs due to an infrared singularity caused by an emergent quasilocality. This qualitatively changes the nature of the infrared (IR) fixed point, and the $epsilon$-expansion is controlled only after the two-loop effect is taken into account. Furthermore, we show that a ratio between velocities emerges as a small parameter, which suppresses a large class of diagrams. We show that the critical exponents do not receive corrections beyond the linear order in $epsilon$ in the limit that the ratio of velocities vanishes. The $epsilon$-expansion gives critical exponents which are consistent with the exact solution obtained in $0 < epsilon leq 1$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا