No Arabic abstract
We have measured the cross section of the radiative process e+e- -> pi+pi-gamma with the KLOE detector at the Frascati phi-factory DAPHNE, from events taken at a CM energy W=1 GeV. Initial state radiation allows us to obtain the cross section for e+e- -> pi+pi-, the pion form factor |F_pi|^2 and the dipion contribution to the muon magnetic moment anomaly, Delta a_mu^{pipi} = (478.5+-2.0_{stat}+-5.0_{syst}+-4.5_{th}) x 10^{-10} in the range 0.1 < M_{pipi}^2 < 0.85 GeV^2, where the theoretical error includes a SU(3) ChPT estimate of the uncertainty on photon radiation from the final pions. The discrepancy between the Standard Model evaluation of a_mu and the value measured by the Muon g-2 collaboration at BNL is confirmed.
We study the process e+e- -> pi+pi-pi+pi-gamma, with a photon emitted from the initial-state electron or positron, using 454.3 fb^-1 of data collected with the BABAR detector at SLAC, corresponding to approximately 260,000 signal events. We use these data to extract the non-radiative sigma(e+e- ->pi+pi-pi+pi-) cross section in the energy range from 0.6 to 4.5 Gev. The total uncertainty of the cross section measurement in the peak region is less than 3%, higher in precision than the corresponding results obtained from energy scan data.
The cross section of the process $e^+e^-topi^+pi^-pi^0$ is measured with a precision of 1.6% to 25% in the energy range between $0.7$ and 3.0 GeV using the Initial State Radiation method. A data set with an integrated luminosity of $2.93$fb$^{-1}$ taken at the center-of-mass energy of $sqrt{s}=3.773$GeV with the BESIII detector at the BEPCII collider is used. The product branching fractions for $omega$, $phi$, $omega(1420)$, and $omega(1650)$ are measured to be $mathcal{B}(omegato e^+e^-) times mathcal{B}(omega to pi^+pi^-pi^0)=(6.94pm0.08pm0.16) times 10^{-5}$, $mathcal{B}(phito e^+e^-) times mathcal{B}(phitopi^+pi^-pi^0) = (4.20pm0.08pm0.19) times 10^{-5}$, $mathcal{B}(omega(1420)to e^+e^-) times mathcal{B}(omega(1420) to pi^+pi^-pi^0) = (0.84pm0.09pm0.09) times 10^{-6}$, and $mathcal{B}(omega(1650) to e^+e^) times mathcal{B}(omega(1650)to pi^+pi^-pi^0) = (1.14pm0.15pm0.15)times10^{-6}$, respectively. The branching fraction $mathcal{B}(J/psito pi^+pi^-pi^0)$ is measured to be $(2.188 pm 0.024 pm 0.024 pm0.040 (Gamma_{ee}^{J/psi}))%$, where $Gamma_{ee}^{J/psi}$ is the dileptonic width of $J/psi$. The first errors are of statistical, the second and third ones of systematic nature.
Using a data set with an integrated luminosity of 2.93 fb$^{-1}$ taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider, we extract the $e^+e^-rightarrow pi^+pi^-$ cross section and the pion form factor $|F_pi|^2$ in the energy range between 600 and 900 MeV. We exploit the method of initial state radiation for this measurement, yielding a systematic uncertainty of 0.9%. We calculate the contribution of the measured cross section to the leading-order hadronic vacuum polarization contribution to $(g-2)_mu$.
We report measurement of the cross section of $e^+e^-to pi^+pi^-psi(2S)$ between 4.0 and $5.5 {rm GeV}$, based on an analysis of initial state radiation events in a $980 rm fb^{-1}$ data sample recorded with the Belle detector. The properties of the $Y(4360)$ and $Y(4660)$ states are determined. Fitting the mass spectrum of $pi^+pi^-psi(2S)$ with two coherent Breit-Wigner functions, we find two solutions with identical mass and width but different couplings to electron-positron pairs: $M_{Y(4360)} = (4347pm 6pm 3) {rm MeV}/c^2$, $Gamma_{Y(4360)} = (103pm 9pm 5) {rm MeV}$, $M_{Y(4660)} = (4652pm10pm 8) {rm MeV}/c^2$, $Gamma_{Y(4660)} = (68pm 11pm 1) rm MeV$; and ${cal{B}}[Y(4360)to pi^+pi^-psi(2S)]cdot Gamma_{Y(4360)}^{e^+e^-} = (10.9pm 0.6pm 0.7) rm eV$ and ${cal{B}}[Y(4660)to pi^+pi^-psi(2S)]cdot Gamma_{Y(4660)}^{e^+e^-} = (8.1pm 1.1pm 0.5) rm eV$ for one solution; or ${cal{B}}[Y(4360)to pi^+pi^-psi(2S)]cdot Gamma_{Y(4360)}^{e^+e^-} = (9.2pm 0.6pm 0.6) rm eV$ and ${cal{B}}[Y(4660)to pi^+pi^-psi(2S)]cdot Gamma_{Y(4660)}^{e^+e^-} = (2.0pm 0.3pm 0.2) rm eV$ for the other. Here, the first errors are statistical and the second systematic. Evidence for a charged charmoniumlike structure at $4.05 {rm GeV}/c^2$ is observed in the $pi^{pm}psi(2S)$ intermediate state in the $Y(4360)$ decays.
We have measured the ratio $sigma(e^+e^-rightarrowpi^+pi^-gamma)/sigma(e^+e^-rightarrow mu^+mu^-gamma)$, with the KLOE detector at DA$Phi$NE for a total integrated luminosity of $sim$ 240 pb$^{-1}$. From this ratio we obtain the cross section $sigma(e^+e^-rightarrowpi^+pi^-)$. From the cross section we determine the pion form factor $|F_pi|^2$ and the two-pion contribution to the muon anomaly $a_mu$ for $0.592<M_{pipi}<0.975$ GeV, $Delta^{pipi} a_mu$= $({rm 385.1pm1.1_{stat}pm2.7_{sys+theo}})times10^{-10}$. This result confirms the current discrepancy between the Standard Model calculation and the experimental measurement of the muon anomaly.