Linear Algebra in the vector space of intervals


Abstract in English

In a previous paper, we have given an algebraic model to the set of intervals. Here, we apply this model in a linear frame. We define a notion of diagonalization of square matrices whose coefficients are intervals. But in this case, with respect to the real case, a matrix of order $n$ could have more than $n$ eigenvalues (the set of intervals is not factorial). We consider a notion of central eigenvalues permits to describe criterium of diagonalization. As application, we define a notion of Exponential mapping.

Download