Do you want to publish a course? Click here

Hyperbolic Geometry of Complex Networks

222   0   0.0 ( 0 )
 Added by Dmitri Krioukov
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as non-interacting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure.



rate research

Read More

We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the Internet into the hyperbolic plane, and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of Internet routing.
We show that complex (scale-free) network topologies naturally emerge from hyperbolic metric spaces. Hyperbolic geometry facilitates maximally efficient greedy forwarding in these networks. Greedy forwarding is topology-oblivious. Nevertheless, greedy packets find their destinations with 100% probability following almost optimal shortest paths. This remarkable efficiency sustains even in highly dynamic networks. Our findings suggest that forwarding information through complex networks, such as the Internet, is possible without the overhead of existing routing protocols, and may also find practical applications in overlay networks for tasks such as application-level routing, information sharing, and data distribution.
Routing information through networks is a universal phenomenon in both natural and manmade complex systems. When each node has full knowledge of the global network connectivity, finding short communication paths is merely a matter of distributed computation. However, in many real networks nodes communicate efficiently even without such global intelligence. Here we show that the peculiar structural characteristics of many complex networks support efficient communication without global knowledge. We also describe a general mechanism that explains this connection between network structure and function. This mechanism relies on the presence of a metric space hidden behind an observable network. Our findings suggest that real networks in nature have underlying metric spaces that remain undiscovered. Their discovery would have practical applications ranging from routing in the Internet and searching social networks, to studying information flows in neural, gene regulatory networks, or signaling pathways.
A condensation transition was predicted for growing technological networks evolving by preferential attachment and competing quality of their nodes, as described by the fitness model. When this condensation occurs a node acquires a finite fraction of all the links of the network. Earlier studies based on steady state degree distribution and on the mapping to Bose-Einstein condensation, were able to identify the critical point. Here we characterize the dynamics of condensation and we present evidence that below the condensation temperature there is a slow down of the dynamics and that a single node (not necessarily the best node in the network) emerges as the winner for very long times. The characteristic time t* at which this phenomenon occurs diverges both at the critical point and at $T -> 0$ when new links are attached deterministically to the highest quality node of the network.
From social interactions to the human brain, higher-order networks are key to describe the underlying network geometry and topology of many complex systems. While it is well known that network structure strongly affects its function, the role that network topology and geometry has on the emerging dynamical properties of higher-order networks is yet to be clarified. In this perspective, the spectral dimension plays a key role since it determines the effective dimension for diffusion processes on a network. Despite its relevance, a theoretical understanding of which mechanisms lead to a finite spectral dimension, and how this can be controlled, represents nowadays still a challenge and is the object of intense research. Here we introduce two non-equilibrium models of hyperbolic higher-order networks and we characterize their network topology and geometry by investigating the interwined appearance of small-world behavior, $delta$-hyperbolicity and community structure. We show that different topological moves determining the non-equilibrium growth of the higher-order hyperbolic network models induce tunable values of the spectral dimension, showing a rich phenomenology which is not displayed in random graph ensembles. In particular, we observe that, if the topological moves used to construct the higher-order network increase the area$/$volume ratio, the spectral dimension continuously decreases, while the opposite effect is observed if the topological moves decrease the area$/$volume ratio. Our work reveals a new link between the geometry of a network and its diffusion properties, contributing to a better understanding of the complex interplay between network structure and dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا