Do you want to publish a course? Click here

On interrelations between Sibgatullins and Alekseevs approaches to the construction of exact solutions of the Einstein-Maxwell equations

118   0   0.0 ( 0 )
 Added by Vladimir S. Manko
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The integral equations involved in Alekseevs monodromy transform technique are shown to be simple combinations of Sibgatullins integral equations and normalizing conditions. An additional complex conjugation introduced by Alekseev in the integrands makes his scheme mathematically inconsistent; besides, in the electrovac case all Alekseevs principal value integrals contain an intrinsic error which has never been identified before. We also explain how operates a non-trivial double-step algorithm devised by Alekseev for rewriting, by purely algebraic manipulations and in a different (more complicated) parameter set, any particular specialization of the known analytically extended N-soliton electrovac solution obtained in 1995 with the aid of Sibgatullins method.



rate research

Read More

The Einstein-Maxwell (E-M) equations in a curved spacetime that admits at least one Killing vector are derived, from a Lagrangian density adapted to symmetries. In this context, an auxiliary space of potentials is introduced, in which, the set of potentials associated to an original (seed) solution of the E-M equations are transformed to a new set, either by continuous transformations or by discrete transformations. In this article, continuous transformations are considered. Accordingly, originating from the so-called $gamma_A$-metric, other exact solutions to the E-M equations are recovered and discussed.
We present several new exact solutions in five and higher dimensional Einstein-Maxwell theory by embedding the Nutku instanton. The metric functions for the five-dimensional solutions depend only on a radial coordinate and on two spatial coordinates for the six and higher dimensional solutions. The six and higher dimensional metric functions are convoluted-like integrals of two special functions. We find that the solutions are regular almost everywhere and some spatial sections of the solution describe wormhole handles. We also find a class of exact and nonstationary convoluted-like solutions to the Einstein-Maxwell theory with a cosmological constant.
Exact solutions to the Einstein field equations may be generated from already existing ones (seed solutions), that admit at least one Killing vector. In this framework, a space of potentials is introduced. By the use of symmetries in this space, the set of potentials associated to a known solution are transformed into a new set, either by continuous transformations or by discrete transformations. In view of this method, and upon consideration of continuous transformations, we arrive at some exact, stationary axisymmetric solutions to the Einstein field equations in vacuum, that may be of geometrical or/and physical interest.
We construct stationary solutions to the Einstein-Maxwell-current system by using the Sasakian manifold for the three-dimensional space. Both the magnetic field and the electric current in the solution are specified by the contact form of the Sasakian manifold. The solutions contain an arbitrary function that describes inhomogeneity of the number density of the charged particles, and the function determines the curvature of the space.
127 - Eyo Ita , Chopin Soo 2014
Exact solutions of the Wheeler-DeWitt equation of the full theory of four dimensional gravity of Lorentzian signature are obtained. They are characterized by Schrodinger wavefunctionals having support on 3-metrics of constant spatial scalar curvature, and thus contain two full physical field degrees of freedom in accordance with the Yamabe construction. These solutions are moreover Gaussians of minimum uncertainty and they are naturally associated with a rigged Hilbert space. In addition, in the limit the regulator is removed, exact 3-dimensional diffeomorphism and local gauge invariance of the solutions are recovered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا