Do you want to publish a course? Click here

UV Luminosity Functions from 132 z~7 and z~8 Lyman-Break Galaxies in the ultra-deep HUDF09 and wide-area ERS WFC3/IR Observations

129   0   0.0 ( 0 )
 Added by Rychard J. Bouwens
 Publication date 2010
  fields Physics
and research's language is English
 Authors R. J. Bouwens




Ask ChatGPT about the research

We identify 73 z~7 and 59 z~8 candidate galaxies in the reionization epoch, and use this large 26-29.4 AB mag sample of galaxies to derive very deep luminosity functions to <-18 AB mag and the star formation rate density at z~7 and z~8. The galaxy sample is derived using a sophisticated Lyman-Break technique on the full two-year WFC3/IR and ACS data available over the HUDF09 (~29.4 AB mag, 5 sigma), two nearby HUDF09 fields (~29 AB mag, 14 arcmin) and the wider area ERS (~27.5 AB mag) ~40 arcmin**2). The application of strict optical non-detection criteria ensures the contamination fraction is kept low (just ~7% in the HUDF). This very low value includes a full assessment of the contamination from lower redshift sources, photometric scatter, AGN, spurious sources, low mass stars, and transients (e.g., SNe). From careful modelling of the selection volumes for each of our search fields we derive luminosity functions for galaxies at z~7 and z~8 to <-18 AB mag. The faint-end slopes alpha at z~7 and z~8 are uncertain but very steep at alpha = -2.01+/-0.21 and alpha=-1.91+/-0.32, respectively. Such steep slopes contrast to the local alpha<~-1.4 and may even be steeper than that at z~4 where alpha=-1.73+/-0.05. With such steep slopes (alpha<~-1.7) lower luminosity galaxies dominate the galaxy luminosity density during the epoch of reionization. The star formation rate densities derived from these new z~7 and z~8 luminosity functions are consistent with the trends found at later times (lower redshifts). We find reasonable consistency, with the SFR densities implied from reported stellar mass densities, being only ~40% higher at z<7. This suggests that (1) the stellar mass densities inferred from the Spitzer IRAC photometry are reasonably accurate and (2) that the IMF at very high redshift may not be very different from that at later times.



rate research

Read More

120 - R.J. Bouwens 2009
We utilize the newly-acquired, ultra-deep WFC3/IR observations over the HUDF to search for star-forming galaxies at z~8-8.5, only 600 million years from recombination, using a Y_{105}-dropout selection. The new 4.7 arcmin**2 WFC3/IR observations reach to ~28.8 AB mag (5 sigma) in the Y_{105}J_{125}H_{160} bands. These remarkable data reach ~1.5 AB mag deeper than the previous data over the HUDF, and now are an excellent match to the HUDF optical ACS data. For our search criteria, we use a two-color Lyman-Break selection technique to identify z~8-8.5 Y_{105}-dropouts. We find 5 likely z~8-8.5 candidates. The sources have H_{160}-band magnitudes of ~28.3 AB mag and very blue UV-continuum slopes, with a median estimated beta of <~-2.5 (where f_{lambda}propto lambda^{beta}). This suggests that z~8 galaxies are not only essentially dust free but also may have very young ages or low metallicities. The observed number of Y_{105}-dropout candidates is smaller than the 20+/-6 sources expected assuming no evolution from z~6, but is consistent with the 5 expected extrapolating the Bouwens et al. 2008 LF results to z~8. These results provide evidence that the evolution in the LF seen from z~7 to z~3 continues to z~8. The remarkable improvement in the sensitivity of WFC3/IR has enabled HST to cross a threshold, revealing star-forming galaxies at z~8-9.
112 - R. J. Bouwens 2011
The HUDF09 data are the deepest near-IR observations ever, reaching to 29.5 mag. Luminosity functions (LF) from these new HUDF09 data for 132 zsim7 and zsim8 galaxies are combined with new LFs for zsim5-6 galaxies and the earlier zsim4 LF to reach to very faint limits (<0.05 L*(z=3)). The faint-end slopes alpha are steep: -1.79+/-0.12 (zsim5), -1.73+/-0.20 (zsim6), -2.01+/-0.21 (zsim7), and -1.91+/-0.32 (zsim8). Slopes alphalesssim-2 lead to formally divergent UV fluxes, though galaxies are not expected to form below sim-10 AB mag. These results have important implications for reionization. The weighted mean slope at zsim6-8 is -1.87+/-0.13. For such steep slopes, and a faint-end limit of -10 AB mag, galaxies provide a very large UV ionizing photon flux. While current results show that galaxies can reionize the universe by zsim6, matching the Thomson optical depths is more challenging. Extrapolating the current LF evolution to z>8, taking alpha to be -1.87+/-0.13 (the mean value at zsim6-8), and adopting typical parameters, we derive Thomson optical depths of 0.061_{-0.006}^{+0.009}. However, this result will change if the faint-end slope alpha is not constant with redshift. We test this hypothesis and find a weak, though uncertain, trend to steeper slopes at earlier times (dalpha/dzsim-0.05+/-0.04), that would increase the Thomson optical depths to 0.079_{-0.017}^{+0.063}, consistent with recent WMAP estimates (tau=0.088+/-0.015). It may thus not be necessary to resort to extreme assumptions about the escape fraction or clumping factor. Nevertheless, the uncertainties remain large. Deeper WFC3/IR+ACS observations can further constrain the ionizing flux from galaxies.
114 - P. A. Oesch 2011
We search for z~10 galaxies over ~160 arcmin^2 of WFC3/IR data in the Chandra Deep Field South, using the public HUDF09, ERS, and CANDELS surveys, that reach to 5sigma depths ranging from 26.9 to 29.4 in H_160 AB mag. z>~9.5 galaxy candidates are identified via J_125-H_160>1.2 colors and non-detections in any band blueward of J_125. Spitzer IRAC photometry is key for separating the genuine high-z candidates from intermediate redshift (z~2-4) galaxies with evolved or heavily dust obscured stellar populations. After removing 16 sources of intermediate brightness (H_160~24-26 mag) with strong IRAC detections, we only find one plausible z~10 galaxy candidate in the whole data set, previously reported in Bouwens et al. (2011). The newer data cover a 3x larger area and provide much stronger constraints on the evolution of the UV luminosity function (LF). If the evolution of the z~4-8 LFs is extrapolated to z~10, six z~10 galaxies are expected in our data. The detection of only one source suggests that the UV LF evolves at an accelerated rate before z~8. The luminosity density is found to increase by more than an order of magnitude in only 170 Myr from z~10 to z~8. This increase is >=4x larger than expected from the lower redshift extrapolation of the UV LF. We are thus likely witnessing the first rapid build-up of galaxies in the heart of cosmic reionization. Future deep HST WFC3/IR data, reaching to well beyond 29 mag, can enable a more robust quantification of the accelerated evolution around z~10.
146 - R. J. Bouwens 2011
Ultra-deep ACS and WFC3/IR HUDF+HUDF09 data, along with the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS field, are used to measure UV colors, expressed as the UV-continuum slope beta, of star-forming galaxies over a wide range in luminosity (0.1L*(z=3) to 2L*(z=3)) at high redshift (z~7 to z~4). Beta is measured using all ACS and WFC3/IR passbands uncontaminated by Ly_alpha and spectral breaks. Extensive tests show that our beta measurements are only subject to minimal biases. Using a different selection procedure, Dunlop et al. recently found large biases in their beta measurements. To reconcile these different results, we simulated both approaches and found that beta measurements for faint sources are subject to large biases if the same passbands are used both to select the sources and to measure beta. High-redshift galaxies show a well-defined rest-frame UV color-magnitude (CM) relationship that becomes systematically bluer towards fainter UV luminosities. No evolution is seen in the slope of the UV CM relationship in the first 1.5 Gyr, though there is a small evolution in the zero-point to redder colors from z~7 to z~4. This suggests that galaxies are evolving along a well-defined sequence in the L(UV)-color (beta) plane (a star-forming sequence?). Dust appears to be the principal factor driving changes in the UV color (beta) with luminosity. These new larger beta samples lead to improved dust extinction estimates at z~4-7 and confirm that the extinction is still essentially zero at low luminosities and high redshifts. Inclusion of the new dust extinction results leads to (i) excellent agreement between the SFR density at z~4-8 and that inferred from the stellar mass density, and (ii) to higher SSFRs at z>~4, suggesting the SSFR may evolve modestly (by factors of ~2) from z~4-7 to z~2.
120 - R.J. Bouwens 2009
We use the ultra-deep WFC3/IR data over the HUDF and the Early Release Science WFC3/IR data over the CDF-South GOODS field to quantify the broadband spectral properties of candidate star-forming galaxies at z~7. We determine the UV-continuum slope beta in these galaxies, and compare the slopes with galaxies at later times to measure the evolution in beta. For luminous L*(z=3) galaxies, we measure a mean UV-continuum slope beta of -2.0+/-0.2, which is comparable to the beta~-2 derived at similar luminosities at z~5-6. However, for the lower luminosity 0.1L*(z=3) galaxies, we measure a mean beta of -3.0+/-0.2. This is substantially bluer than is found for similar luminosity galaxies at z~4, just 800 Myr later, and even at z~5-6. In principle, the observed beta of -3.0 can be matched by a very young, dust-free stellar population, but when nebular emission is included the expected beta becomes >~-2.7. To produce these very blue betas (i.e., beta~-3), extremely low metallicities and mechanisms to reduce the red nebular emission are likely required. For example, a large escape fraction (i.e., f_{esc}>~0.3) could minimize the contribution from this red nebular emission. If this is correct and the escape fraction in faint z~7 galaxies is >~0.3, it may help to explain how galaxies reionize the universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا