No Arabic abstract
The structural parameters of the disk of the Large Magellanic Cloud (LMC) are estimated.We used the red clump stars from the VI photometric data of the Optical Gravitational Lensing Experiment survey and from the Magellanic Cloud Photometric Survey for the estimation of inclination and position angle of line of nodes of the LMC disk. The dereddened peak I magnitude of the red clump stars in each subregion is used to obtain the relative distances and hence the z coordinate. The RA and Dec of each sub-region is converted into x & y cartesian coordinates. A weighted least square plane fitting method is applied to this x,y,z data to estimate the structural parameters of the LMC disk. We find an inclination of i =23.0 plus or minus 0.8 and PAlon = 163.7 plus or minus 1.5 for the LMC disk using the OGLE III data and an inclination of i=37.4 plus or minus 2.3 and PAlon= 141.2 plus or minus 3.7 for the LMC disk using the MCPS data. The effect of choice of center, reddening and area covered on the estimated parameters are discussed. Regions in the north west, south west and south east of the LMC disk are warped with respect to the fitted plane. We also identify a symmetric but offcentered warp in the inner LMC.We identify that the structure of the LMC disk inside the 3 degree radius is different from the outside disk such that the inner LMC has relatively less inclination and relatively large PAlon. The 3D plot of the LMC disk suggests an offcentered increase in the inclination for the north-eastern regions which might be due to tidal effects. We suggest that the variation in the planar parameters estimated by various authors as well as in this study is because of the difference in coverage and the complicated inner structure of the LMC disk. In the inner LMC, the stellar and HI disk are found to have similar properties.
The structural parameters, like the inclination, i and the position angle of the line of nodes (PA_lon) of the disk of the Large Magellanic Cloud (LMC) are estimated using the JH photometric data of red clump stars from the Infrared Survey Facility - Magellanic Cloud Point Source Catalog (IRSF-MCPSC). The observed LMC region is divided into several sub-regions and stars in each region are cross identified with the optically identified red clump stars to obtain the near infrared magnitudes. The peak values of H magnitude and (J-H) colour of the observed red clump distribution are obtained by fitting a profile to the distributions and also by taking the average value of magnitude and colour of the red clump stars in the bin with largest number. Then the dereddened peak H0 magnitude of the red clump stars in each sub-region is obtained. The RA, Dec and relative distance from the center of each sub-region are converted into x, y & z Cartesian coordinates. A weighted least square plane fitting method is applied to this x,y,z data to estimate the structural parameters of the LMC disk. A reddening map based on (J-H) colour of the RC stars is presented. When the peaks of the red clump distribution were identified by averaging, an inclination of 25.7 +/- 1.6 and PA_lon = 141.5 +/- 4.5 were obtained. We estimate a distance modulus of 18.47 +/- 0.1 mag to the LMC. Extra-planar features which are in front as well as behind the fitted plane are identified which match with the optically identified extra-planar features. The bar of the LMC is found to be part of the disk within 500 pc. The estimates of the structural parameters are found to be independent of the photometric bands used for the analysis. We find that the inner disk, within 3.0, is less inclined and has larger value of PA_lon when compared to the outer disk.
We present the most extensive and detailed reddening maps of the Magellanic Clouds (MCs) derived from the color properties of Red Clump (RC) stars. The analysis is based on the deep photometric maps from the fourth phase of the Optical Gravitational Lensing Experiment (OGLE-IV), covering approximately 670 deg2 of the sky in the Magellanic System region. The resulting maps provide reddening information for 180 deg2 in the Large Magellanic Cloud (LMC) and 75 deg2 in the Small Magellanic Cloud (SMC), with a resolution of 1.7x1.7 arcmin in the central parts of the MCs, decreasing to approximately 27x27 arcmin in the outskirts. The mean reddening is E(V-I) = 0.100 +- 0.043 mag in the LMC and E(V-I) = 0.047 +- 0.025 mag in the SMC. We refine methods of calculating the RC color to obtain the highest possible accuracy of reddening maps based on RC stars. Using spectroscopy of red giants, we find the metallicity gradient in both MCs, which causes a slight decrease of the intrinsic RC color with distance from the galaxy center of ~0.002 mag/deg in the LMC and between 0.003 and 0.009 mag/deg in the SMC. The central values of the intrinsic RC color are 0.886 and 0.877 mag in the LMC and SMC, respectively. The reddening map of the MCs is available on-line both in the downloadable form and as an interactive interface.
The Hipparcos I-band calibration of horizontal-branch red clump giants as standard candles has lead to controversial results for the distance to the Large Magellanic Cloud (LMC). In an attempt to properly ascertain the corrections for interstellar extinction and clump age and metallicity, we analyze new multi-wavelength luminosity functions of the LMC red clump. Our photometry dataset in the K-band was obtained with the SOFI infrared imager at the European Southern Observatorys New Technology Telescope. In the V and I passbands, we employ data from WFPC2 onboard the Hubble Space Telescope. The LMC red clump is first identified in a K,(V-K) color-magnitude diagram. Our luminosity functions yield apparent magnitudes of K = 16.974, I = 18.206, and V = 19.233 (+- 0.009_r +- 0.02_s; random and systematic error, respectively). Compared directly to the Hipparcos red clump calibration (without a correction for age and metallicity), the LMC clump measurements imply a negative interstellar reddening correction. This unphysical result indicates a population difference between clumps. A modified calibration based on theoretical modeling yields an average reddening correction of E(B-V) = 0.089 +- 0.015_r, and a true LMC distance modulus of 18.493 +- 0.033_r +- 0.03_s. We reconcile our result with the short distance previously derived from OGLE II red clump data.
Galaxy interactions distort the distribution of baryonic matter and can affect star formation. The nearby Magellanic Clouds are a prime example of an ongoing galaxy interaction process. Here we use the intermediate-age ($sim1$-$10$ Gyr) red clump stars to map the three-dimensional structure of the Small Magellanic Cloud (SMC) and interpret it within the context of its history of interaction with the Large Magellanic Cloud (LMC) and the Milky Way. Red clump stars are selected from near-infrared colour-magnitude diagrams based on data from the VISTA survey of the Magellanic Clouds. Interstellar reddening is measured and removed, and the corrected brightness is converted to a distance, on a star-by-star basis. A flat plane fitted to the spatial distribution of red clump stars has an inclination $i=35deg$-$48deg$ and position angle PA$=170deg$-$186deg$. However, significant deviations from this plane are seen, especially in the periphery and on the eastern side of the SMC. In the latter part, two distinct populations are present, separated in distance by as much as 10 kpc. Distant red clump stars are seen in the North of the SMC, and possibly also in the far West; these might be associated with the predicted `Counter-Bridge. We also present a dust reddening map, which shows that dust generally traces stellar mass. The structure of the intermediate-age stellar component of the SMC bears the imprints of strong interaction with the LMC a few Gyr ago, which cannot be purely tidal but must have involved ram pressure stripping.
The binary fraction of unevolved massive stars is thought to be 70-100% but there are few observational constraints on the binary fraction of the evolved version of a subset of these stars, the red supergiants (RSGs). Here we identify a complete sample of RSGs in the Large Magellanic Cloud (LMC) using new spectroscopic observations and archival UV, IR and broadband optical photometry. We find 4090 RSGs with log L/Lo > 3.5 with 1820 of them having log L/Lo > 4, which we believe is our completeness limit. We additionally spectroscopically confirmed 38 new RSG+B star binaries in the LMC, bringing the total known up to 55. We then estimated the binary fraction using a k-nearest neighbors algorithm that classifies stars as single or binary based on photometry with a spectroscopic sample as a training set. We take into account observational biases such as line-of-sight stars and binaries in eclipse while also calculating model-dependent corrections for RSGs with companions that our observations were not designed to detect. Based on our data, we find an initial result of 13.5 +7.56/-6.67% for RSGs with O or B-type companions. Using the Binary Population and Spectral Synthesis (BPASS) models to correct for unobserved systems, this corresponds to a total RSG binary fraction of 19.5 +7.6/-6.7%. This number is in broad agreement with what we would expect given an initial OB binary distribution of 70%, a predicted merger fraction of 20-30% and a binary interaction fraction of 40-50%.