No Arabic abstract
We present the final results from a high sampling rate, multi-month, spectrophotometric reverberation mapping campaign undertaken to obtain either new or improved Hbeta reverberation lag measurements for several relatively low-luminosity AGNs. We have reliably measured thetime delay between variations in the continuum and Hbeta emission line in six local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) R-L relationship, where our results remove outliers and reduce the scatter at the low-luminosity end of this relationship. We also present velocity-resolved Hbeta time delay measurements for our complete sample, though the clearest velocity-resolved kinematic signatures have already been published.
We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140-day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C120, Mrk 6, and PG2130+099, from which we have measured the time lag between variations in the 5100 Angstrom continuum and the H-beta broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of MBH and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.
We analyze published reverberation mapping data for three Seyfert galaxies (NGC 3227, NGC 3516, and NGC 4593) to refine the mass estimate for the supermassive black hole in the center of each object. Treatment of the data in a manner more consistent with other large compilations of such masses allows us to more securely compare our results to wider samples of data, e.g., in the investigation of the M_bh-sigma relationship for active and quiescent galaxies.
We present the results of our optical monitoring campaign of the X-ray source H 0507+164, a low luminosity Seyfert 1.5 galaxy at a redshift z = 0.018. Spectroscopic observations were carried out during 22 nights in 2007, from the 21 of November to the 26 of December. Photometric observations in the R-band for 13 nights were also obtained during the same period. The continuum and broad line fluxes of the galaxy were found to vary during our monitoring period. The R-band differential light curve with respect to a companion star also shows a similar variability. Using cross correlation analysis, we estimated a time delay of 3.01 days (in the rest frame), of the response of the broad H-beta line fluxes to the variations in the optical continuum at 5100 angstroms. Using this time delay and the width of the H-beta line, we estimated the radius for the Broad Line Region (BLR) of 2.53 x 10^{-3} parsec, and a black hole mass of 9.62 x 10^{6} solar mass.
We present the results from a spectroscopic monitoring campaign to obtain reverberation-mapping measurements and investigate the broad-line region kinematics for active galactic nuclei (AGN) of Mrk~817 and NGC~7469. This campaign was undertaken with the Lijiang 2.4-meter telescope, the median spectroscopic sampling is 2.0 days for Mrk~817 and 1.0 days for NGC~7469. We detect time lags of the broad emission lines including H$beta$, H$gamma$, He~{sc ii} and He~{sc i} for both AGNs, and including Fe~{sc ii} for Mrk~817 with respect to the varying AGN continuum at 5100~AA. Investigating the relationship between line widths and time lags of the broad emission lines, we find that the BLR dynamics of Mrk~817 and NGC~7469 are consistent with the virial prediction. We estimate the masses of central supermassive black hole (SMBH) and the accretion rates of both AGNs. Using the data of this campaign, we construct the velocity-resolved lag profiles of the broad H$gamma$, H$beta$, and He~{sc i} lines for Mrk~817, which show almost the same kinematic signatures that the time lags in the red wing are slightly larger than the time lags in the blue wing. For NGC~7469, we only clearly construct the velocity-resolved lag profiles of the broad H$gamma$ and H$beta$, which show very similar kinematic signatures to the BLR of Mrk~817. These signatures indicate that the BLR of Keplerian motion in both AGNs seemingly has outflowing components during the monitoring period. We discuss the kinematics of the BLR and the measurements including SMBH mass and accretion rates.
We report results of the first reverberation mapping campaign of I Zwicky 1 during $2014$-$2016$, which showed unambiguous reverberations of the broad H$beta$ line emission to the varying optical continuum. From analysis using several methods, we obtain a reverberation lag of $tau_{rm Hbeta}=37.2^{+4.5}_{-4.9},$ days. Taking a virial factor of $f_{_{rm BLR}}=1$, we find a black hole mass of $M_{bullet}=9.30_{-1.38}^{+1.26}times 10^6 M_{odot}$ from the mean spectra. The accretion rate is estimated to be $203.9_{-65.8}^{+61.0},L_{rm Edd}c^{-2}$, suggesting a super-Eddington accretor, where $L_{rm Edd}$ is the Eddington luminosity and $c$ is the speed of light. By decomposing {it Hubble Space Telescope} images, we find that the stellar mass of the bulge of its host galaxy is $log (M_{rm bulge}/M_{odot}) = rm 10.92pm 0.07$. This leads to a black hole to bulge mass ratio of $sim 10^{-4}$, which is significantly smaller than that of classical bulges and elliptical galaxies. After subtracting the host contamination from the observed luminosity, we find that I Zw 1 follows the empirical $R_{rm BLR}propto L_{5100}^{1/2}$ relation.