Cross-link governed dynamics of biopolymer networks


Abstract in English

Cytoskeletal networks of biopolymers are cross-linked by a variety of proteins. Experiments have shown that dynamic cross-linking with physiological linker proteins leads to complex stress relaxation and enables network flow at long times. We present a model for the mechanical properties of transient networks. By a combination of simulations and analytical techniques we show that a single microscopic timescale for cross-linker unbinding leads to a broad spectrum of macroscopic relaxation times, resulting in a weak power-law dependence of the shear modulus on frequency. By performing rheological experiments, we demonstrate that our model quantitatively describes the frequency behavior of actin network cross-linked with $alpha$-Actinin-$4$ over four decades in frequency.

Download