Do you want to publish a course? Click here

Doppler-free Yb Spectroscopy with Fluorescence Spot Technique

298   0   0.0 ( 0 )
 Added by Altaf Nizamani
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a simple technique to measure the resonant frequency of the 398.9 nm 1S0 - 1P1 transition for the different Yb isotopes. The technique, that works by observing and aligning fluorescence spots, has enabled us to measure transition frequencies and isotope shifts with an accuracy of 60 MHz. We provide wavelength measurements for the transition that differ from previously published work. Our technique also allows for the determination of Doppler shifted transition frequencies for photoionisation experiments when the atomic beam and laser beam are not perpendicular and furthermore allows us to determine the average velocity of the atoms along the direction of atomic beam.



rate research

Read More

We investigate the temporal dynamics of Doppler cooling of an initially hot single trapped atom in the weak binding regime using a semiclassical approach. We develop an analytical model for the simplest case of a single vibrational mode for a harmonic trap, and show how this model allows us to estimate the initial energy of the trapped particle by observing the fluorescence rate during the cooling process. The experimental implementation of this temperature measurement provides a way to measure atom heating rates by observing the temperature rise in the absence of cooling. This method is technically relatively simple compared to conventional sideband detection methods, and the two methods are in reasonable agreement. We also discuss the effects of RF micromotion, relevant for a trapped atomic ion, and the effect of coupling between the vibrational modes on the cooling dynamics.
The method of Doppler - free comb - spectroscopy for dipole transitions was proposed. The calculations for susceptibility spectrum for moving two-level atoms driving by strong counter propagating combs have been done. The used theoretical method based on the Fourier expansion of the components of density matrix on two rows on kv (v-velocity of group of atoms, k-projection of wave vector) and {Omega} (frequency between comb components). For testing of validity of this method the direct numerical integration was done. The narrow peaks with homogeneous width arise on the background of Doppler counter. The contrast of these peaks is large for largest amplitudes of comb-components. Power broadening is increasing with increase of field amplitudes. The spectral range of absorption spectrum is determined by the spectral range of comb generator and all homogeneous lines arise simultaneously. The spectral resolution is determined by the width of homogeneously-broadening lines. The physical nature of narrow peaks is in the existence of multi-photon transitions between manifolds of quasi-energy levels arising for different groups of atoms moving with velocities that satisfy to the resonant conditions 2kv= (n+l){Omega}, where n, l - are integers and {Omega} - frequency difference between comb teeth.
We demonstrate simple and robust methods for Doppler cooling and obtaining high fluorescence from trapped 43Ca+ ions at a magnetic field of 146 Gauss. This field gives access to a magnetic-field-independent atomic clock qubit transition within the ground level hyperfine structure of the ion, but also causes the complex internal structure of the 64 states relevant to Doppler cooling to be spread over many times the atomic transition line-width. Using a time-dependent optical Bloch equation simulation of the system we develop a simple scheme to Doppler-cool the ion on a two-photon dark resonance, which is robust to typical experimental variations in laser intensities, detunings and polarizations. We experimentally demonstrate cooling to a temperature of 0.3 mK, slightly below the Doppler limit for the corresponding two-level system, and then use Raman sideband laser cooling to cool further to the ground states of the ions radial motional modes. These methods will enable two-qubit entangling gates with this ion, which is one of the most promising qubits so far developed.
196 - Cyril Lemarchand 2013
We report on our on-going effort to measure the Boltzmann constant, kB, using the Doppler Broadening Technique. The main systematic effects affecting the measurement are discussed. A revised error budget is presented in which the global uncertainty on systematic effects is reduced to 2.3 ppm. This corresponds to a reduction of more than one order of magnitude compared to our previous Boltzmann constant measurement. Means to reach a determination of kB at the part per million accuracy level are outlined.
220 - Cyril Lemarchand 2010
In this paper, we present significant progress performed on an experiment dedicated to the determination of the Boltzmann constant, k, by accurately measuring the Doppler absorption profile of a line in a gas of ammonia at thermal equilibrium. This optical method based on the first principles of statistical mechanics is an alternative to the acoustical method which has led to the unique determination of k published by the CODATA with a relative accuracy of 1.7 ppm. We report on the first measurement of the Boltzmann constant by laser spectroscopy with a statistical uncertainty below 10 ppm, more specifically 6.4 ppm. This progress results from improvements in the detection method and in the statistical treatment of the data. In addition, we have recorded the hyperfine structure of the probed saQ(6,3) rovibrational line of ammonia by saturation spectroscopy and thus determine very precisely the induced 4.36 (2) ppm broadening of the absorption linewidth. We also show that, in our well chosen experimental conditions, saturation effects have a negligible impact on the linewidth. Finally, we draw the route to future developments for an absolute determination of with an accuracy of a few ppm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا