Do you want to publish a course? Click here

Isospin dependent multifragmentation of relativistic projectiles

377   0   0.0 ( 0 )
 Added by Wolfgang Trautmann
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

The N/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at the GSI Schwerionen Synchrotron (SIS). Stable and radioactive Sn and La beams with an incident energy of 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. For the interpretation of the data, calculations with the statistical multifragmentation model for a properly chosen ensemble of excited sources were performed. The parameters of the ensemble, representing the variety of excited spectator nuclei expected in a participant-spectator scenario, are determined empirically by searching for an optimum reproduction of the measured fragment-charge distributions and correlations. An overall very good agreement is obtained. The possible modification of the liquid-drop parameters of the fragment description in the hot freeze-out environment is studied, and a significant reduction of the symmetry-term coefficient is found necessary to reproduce the mean neutron-to-proton ratios <N>/Z and the isoscaling parameters of Z<=10 fragments. The calculations are, furthermore, used to address open questions regarding the modification of the surface-term coefficient at freeze-out, the N/Z dependence of the nuclear caloric curve, and the isotopic evolution of the spectator system between its formation during the initial cascade stage of the reaction and its subsequent breakup.



rate research

Read More

Multiple emission of intermediate-mass fragments has been studied for the collisions of p, $^4$He and $^{12}$C on Au with the $4pi$ setup FASA. In the case of $^{12}$C(22.4 GeV)+Au and $^4$He(14.6 GeV)+Au collisions, the deviations from a pure thermal break-up are seen in the energy spectra of the emitted fragments: the spectra are harder than calculated and than measured in p-induced collisions. This difference is attributed to a collective flow with the expansion velocity on the surface about 0.1 $c$ (for $^{12}$C+Au collisions).
63 - V. V. Parkar , V. Jha , S. Kailas 2020
The production of $alpha$-particles in reactions using both the strongly and weakly bound projectiles at energies around the Coulomb barrier show several interesting features. To understand these, the role of various reaction mechanisms responsible for $alpha$-production, such as non-capture breakup, capture of only one of the fragments subsequent to projectile breakup and their contribution to reaction cross sections have been investigated. A systematic study of the $alpha$-particle production based on available data for various projectile target systems have been performed and a classification based on projectile type is obtained.
287 - D. Gruyer 2012
Distributions of the largest fragment charge, Zmax, in multifragmentation reactions around the Fermi energy can be decomposed into a sum of a Gaussian and a Gumbel distribution, whereas at much higher or lower energies one or the other distribution is asymptotically dominant. We demonstrate the same generic behavior for the largest cluster size in critical aggregation models for small systems, in or out of equilibrium, around the critical point. By analogy with the time-dependent irreversible aggregation model, we infer that Zmax distributions are characteristic of the multifragmentation time-scale, which is largely determined by the onset of radial expansion in this energy range.
140 - B. Borderie 2008
This review article is focused on the tremendous progress realized during the last fifteen years in the understanding of multifragmentation and its relationship to the liquid-gas phase diagram of nuclei and nuclear matter. The explosion of the whole nucleus, early predicted by Bohr [N. Bohr, Nature 137 (1936) 351], is a very complex and rich subject which continues to fascinate nuclear physicists as well as theoreticians who extend the thermodynamics of phase transitions to finite systems.
110 - V. Derya , D. Savran , J. Endres 2014
Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (alpha,alphagamma) experiment at E_{alpha}=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا