No Arabic abstract
Within the geometrical framework developed in arXiv:0705.2362, the problem of minimality for constrained calculus of variations is analysed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and are then reinterpreted in terms of Jacobi fields.
A geometric setup for constrained variational calculus is presented. The analysis deals with the study of the extremals of an action functional defined on piecewise differentiable curves, subject to differentiable, non-holonomic constraints. Special attention is paid to the tensorial aspects of the theory. As far as the kinematical foundations are concerned, a fully covariant scheme is developed through the introduction of the concept of infinitesimal control. The standard classification of the extremals into normal and abnormal ones is discussed, pointing out the existence of an algebraic algorithm assigning to each admissible curve a corresponding abnormality index, related to the co-rank of a suitable linear map. Attention is then shifted to the study of the first variation of the action functional. The analysis includes a revisitation of Pontryagins equations and of the Lagrange multipliers method, as well as a reformulation of Pontryagins algorithm in hamiltonian terms. The analysis is completed by a general result, concerning the existence of finite deformations with fixed endpoints.
We study the asymptotic behavior of a special smooth solution y(x,t) to the second member of the Painleve I hierarchy. This solution arises in random matrix theory and in the study of Hamiltonian perturbations of hyperbolic equations. The asymptotic behavior of y(x,t) if xto pminfty (for fixed t) is known and relatively simple, but it turns out to be more subtle when x and t tend to infinity simultaneously. We distinguish a region of algebraic asymptotic behavior and a region of elliptic asymptotic behavior, and we obtain rigorous asymptotics in both regions. We also discuss two critical transitional asymptotic regimes.
The operator associated to the angular part of the Dirac equation in the Kerr-Newman background metric is a block operator matrix with bounded diagonal and unbounded off-diagonal entries. The aim of this paper is to establish a variational principle for block operator matrices of this type and to derive thereof upper and lower bounds for the angular operator mentioned above. In the last section, these analytic bounds are compared to numerical values from the literature.
We develop the integral calculus for quasi-standard smooth functions defined on the ring of Fermat reals. The approach is by proving the existence and uniqueness of primitives. Besides the classical integral formulas, we show the flexibility of the Cartesian closed framework of Fermat spaces to deal with infinite dimensional integral operators. The total order relation between scalars permits to prove several classical order properties of these integrals and to study multiple integrals on Peano-Jordan-like integration domains.
An extension of the Legendre transform to non-convex functions with vanishing Hessian as a mix of envelope and general solutions of the Clairaut equation is proposed. Applying this to systems with constraints, the procedure of finding a Hamiltonian for a degenerate Lagrangian is just that of solving a corresponding Clairaut equation with a subsequent application of the proposed Legendre-Clairaut transformation. In this way the unconstrained version of Hamiltonian equations is obtained. The Legendre-Clairaut transformation presented is involutive. We demonstrate the origin of the Dirac primary constraints, along with their explicit form, and this is done without using the Lagrange multiplier method.