Dynamics of a tunable superfluid junction


Abstract in English

We study the population dynamics of a Bose-Einstein condensate in a double-well potential throughout the crossover from Josephson dynamics to hydrodynamics. At barriers higher than the chemical potential, we observe slow oscillations well described by a Josephson model. In the limit of low barriers, the fundamental frequency agrees with a simple hydrodynamic model, but we also observe a second, higher frequency. A full numerical simulation of the Gross-Pitaevskii equation giving the frequencies and amplitudes of the observed modes between these two limits is compared to the data and is used to understand the origin of the higher mode. Implications for trapped matter-wave interferometers are discussed.

Download