Do you want to publish a course? Click here

Multi-dimensional modelling of X-ray spectra for AGN accretion-disk outflows III: application to a hydrodynamical simulation

108   0   0.0 ( 0 )
 Added by Stuart A. Sim
 Publication date 2010
  fields Physics
and research's language is English
 Authors S. A. Sim




Ask ChatGPT about the research

We perform multi-dimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disk wind from an active galactic nucleus. The synthetic spectra confirm expectations from parameterized models that a disk wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disk plane but ultimately falls back. We also confirm that the strong Fe Kalpha line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determining the ionization conditions in the wind. We find that scattered radiation is rather effective in ionizing gas which is shielded from direct irradiation from the central source. This effect likely makes the successful launching of a massive disk wind somewhat more challenging and should be considered in future wind simulations.



rate research

Read More

123 - S. A. Sim 2008
We use a multi-dimensional Monte Carlo code to compute X-ray spectra for a variety of active galactic nucleus (AGN) disk-wind outflow geometries. We focus on the formation of blue-shifted absorption features in the Fe K band and show that line features similar to those which have been reported in observations are often produced for lines-of-sight through disk-wind geometries. We also discuss the formation of other spectral features in highly ionized outflows. In particular we show that, for sufficiently high wind densities, moderately strong Fe K emission lines can form and that electron scattering in the flow may cause these lines to develop extended red wings. We illustrate the potential relevance of such models to the interpretation of real X-ray data by comparison with observations of a well-known AGN, Mrk 766.
We present simple XSPEC models for fitting excess variance spectra of AGN. Using a simple Monte-Carlo approach, we simulate a range of spectra corresponding to physical parameters varying, then calculate the resulting variance spectra. Starting from a variable power-law, we build up a set of models corresponding to the different physical processes that can affect the final excess variance spectrum. We show that the complex excess variance spectrum of IRAS 13224-3809 can be well described by such an intrinsic variability model, where the power-law variability is damped by relativistic reflection and enhanced by an ultra fast outflow. The reflection flux is correlated with that of the power-law, but not perfectly. We argue that this correlation is stronger at high frequencies, where reverberation lags are detected, while excess variance spectra are typically dominated by low frequency variability.
X-ray and radio data recently acquired as part of a project to study Cyg OB2#9 are used to constrain physical models of the binary system, providing in-depth knowledge about the wind-wind collision and the thermal, and non-thermal, emission arising from the shocks. We use a three-dimensional, adaptive mesh refinement simulation (including wind acceleration, radiative cooling, and the orbital motion of the stars) to model the gas dynamics of the wind-wind collision. The simulation output is used as the basis for radiative transfer calculations considering the thermal X-ray emission and the thermal/non-thermal radio emission. To obtain good agreement with the X-ray observations, our initial mass-loss rate estimates require a down-shift by a factor of roughly 7.7 to $6.5times10^{-7}$ and $7.5times10^{-7}$ solar mass per year for the primary and secondary star, respectively. Furthermore, the low gas densities and high shock velocities in Cyg OB2#9 are suggestive of unequal electron and ion temperatures, and the X-ray analysis indicates that an (immediately post-shock) electron-ion temperature ratio of $simeq 0.1$ is also required. The radio emission is dominated by (non-thermal) synchrotron emission. A parameter space exploration provides evidence against models assuming equipartition between magnetic and relativistic energy densities. However, fits of comparable quality can be attained with models having stark contrasts in the ratio of magnetic-to-relativistic energy densities. The radio models also reveal a subtle effect whereby inverse Compton cooling leads to an increase in emissivity as a result of the synchrotron characteristic frequency being significantly reduced. Finally, using the results of the radio analysis, we estimate the surface magnetic field strengths to be $approx 0.3-52;$G. (Abridged)
It has been suggested that the cycles of activity of X-ray Binaries (XrB) are triggered by a switch in the dominant disk torque responsible for accretion (paper I). As the disk accretion rate increases, the disk innermost regions would change from a jet-emitting disk (JED) to a standard accretion disk (SAD). While JEDs have been proven to successfully reproduce hard states (paper II), the existence of an outer cold SAD introduces an extra non local cooling term. We investigate the thermal structure and associated spectra of such a hybrid disk configuration. We use the 2T plasma code elaborated in paper II, allowing to compute outside-in the disk local thermal equilibrium with self-consistent advection and optically thin-to-thick transitions, in both radiation and gas supported regimes. The non-local inverse Compton cooling introduced by the external soft photons is computed by the BELM code. This additional term has a profound influence on JED solutions, allowing a smooth temperature transition from the outer SAD to the inner JED. We explore the full parameter space in disk accretion rate and transition radius, and show that the whole domain in X-ray fluxes and hardness ratios covered by standard XrB cycles is well reproduced by such hybrid configurations. Precisely, a reasonable combination of these parameters allows to reproduce the 3-200 keV spectra of five canonical XrB states. Along with X-ray signatures, JED-SAD configurations also naturally account for the radio emission whenever it is observed. By varying only the transition radius and the accretion rate, hybrid disk configurations combining an inner JED and an outer SAD are able to reproduce simultaneously the X-ray spectral states and radio emission of X-ray binaries during their outburst. Adjusting these two parameters, it is then possible to reproduce a full cycle. This will be shown in a forthcoming paper (paper IV).
The cosmic history of supermassive black hole (SMBH) growth is important for understanding galaxy evolution, reionization and the physics of accretion. Recent NuSTAR, Swift-BAT and textit{Chandra} hard X-ray surveys have provided new constraints on the space density of heavily obscured Active Galactic Nuclei (AGN). Using the new X-ray luminosity function derived from these data, we here estimate the accretion efficiency of SMBHs and their contribution to reionization. We calculate the total ionizing radiation from active galactic nuclei (AGN) as a function of redshift, based on the X radiation and distribution of obscuring column density, converted to UV wavelengths. Limiting the luminosity function to unobscured AGN only, our results agree with current UV luminosity functions of unobscured AGN. For realistic assumptions about the escape fraction, the contribution of all AGN to cosmic reionization is $sim4$ times lower than the galaxy contribution (23% at $zsim6$). Our results also offer an observationally constrained prescription that can be used in simulations or models of galaxy evolution. To estimate the average efficiency with which supermassive black holes convert mass to light, we compare the total radiated energy, converted from X-ray light using a bolometric correction, to the most recent local black hole mass density. The most likely value, $eta sim 0.3-0.34$, approaches the theoretical limit for a maximally rotating Kerr black hole, $eta=0.42$, implying that on average growing supermassive black holes are spinning rapidly.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا