Do you want to publish a course? Click here

The Fibre Multi-Object Spectrograph (FMOS) for Subaru Telescope

527   0   0.0 ( 0 )
 Added by Masahiko Kimura
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fibre Multi-Object Spectrograph (FMOS) is the first near-infrared instrument with a wide field of view capable of acquiring spectra simultaneously from up to 400 objects. It has been developed as a common-use instrument for the F/2 prime-focus of the Subaru Telescope. The field coverage of 30 diameter is achieved using a new 3-element corrector optimized in the near-infrared (0.9-1.8um) wavelength range. Due to limited space at the prime-focus, we have had to develop a novel fibre positioner called Echidna together with two OH-airglow suppressed spectrographs. FMOS consists of three subsystems: the prime focus unit for IR, the fibre positioning system/connector units, and the two spectrographs. After full systems integration, FMOS was installed on the telescope in late 2007. Many aspects of performance were checked through various test and engineering observations. In this paper, we present the optical and mechanical components of FMOS and show the results of our on-sky engineering observations to date.



rate research

Read More

We report on the design, manufacturing, and performance of the image slicer for the High Dispersion Spectrograph (HDS) on the Subaru Telescope. This instrument is a Bowen-Walraven type image slicer providing five 0.3 arcsec x 1.5 arcsec images with a resolving power of R= 110,000. The resulting resolving power and line profiles are investigated in detail, including estimates of the defocusing effect on the resolving power. The throughput in the wavelength range from 400 to 700 nm is higher than 80%, thereby improving the efficiency of the spectrograph by a factor of 1.8 for 0.7 arcsec seeing.
We describe the conceptual design of the spectrograph opto-mechanical concept for the SuMIRe Prime Focus Spectrograph (PFS) being developed for the SUBARU telescope. The SuMIRe PFS will consist of four identical spectrographs, each receiving 600 fibers from a 2400 fiber robotic positioner at the prime focus. Each spectrograph will have three channels covering in total, a wavelength range from 380 nm to 1300 nm. The requirements for the instrument are summarized in Section 1. We present the optical design and the optical performance and analysis in Section 2. Section 3 introduces the mechanical design, its requirements and the proposed concepts. Finally, the AIT phases for the Spectrograph System are described in Section 5.
228 - Marc Balcells 2010
Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT.
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 {mu}m to 1.26 {mu}m, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 {mu}m to 0.89 {mu}m will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase.
The Prime Focus Spectrograph (PFS) is a new multi-fiber spectrograph on Subaru telescope. PFS will cover around 1.4 degree diameter field with ~2400 fibers. To ensure precise positioning of the fibers, a metrology camera is designed to provide the fiber position information within 5 {mu}m error. The final positioning accuracy of PFS is targeted to be better than 10 {mu}m. The metrology camera will locate at the Cassegrain focus of Subaru telescope to cover the whole focal plane. The PFS metrology camera will also serve for the existing multi-fiber infrared spectrograph FMOS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا