Do you want to publish a course? Click here

New Iron Arsenide Oxides (Fe2As2)(Sr4(Sc,Ti)3O8), (Fe2As2)(Ba4Sc3O7.5), and (Fe2As2)(Ba3Sc2O5)

217   0   0.0 ( 0 )
 Added by Hiraku Ogino Dr.
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We synthesized new layered iron arsenide oxides (Fe2As2)(Sr4(Sc,Ti)3O8),(Fe2As2)(Ba4Sc3O7.5), and (Fe2As2)(Ba3Sc2O5). The crystal structures of these compounds are tetragonal with a space group of I4/mmm. The structure of (Fe2As2)(Sr4(Sc,Ti)3O8) and (Fe2As2)(Ba4Sc3O7.5) consists of the alternate stacking of antifluorite Fe2As2 layers and triple perovskite-type oxide layers. The interlayer distance between the Fe planes of (Fe2As2)(Ba4Sc3O7.5) is ~18.7 A. Moreover, the a-axis of (Fe2As2)(Ba3Sc2O5) is the longest among the layered iron pnictides, indicating the structural flexibility of the layered iron pnictide containing perovskite-type layers. The bulk sample of (Fe2As2)(Sr4(Sc0.6Ti0.4)3O8) exhibited diamagnetism up to 28 K in susceptibility measurements.



rate research

Read More

We have discovered new layered oxyarsenides (Fe2As2)(Sr4M2O6) (M = Sc, Cr: M-22426). These materials are isostructural with (Fe2P2)(Sr4Sc2O6), which was found in our previous study. The new compounds are tetragonal with a space group of P4/nmm and consist of the anti-fluorite type FeAs layer and perovskite-type blocking layer. The lattice constants are a = 4.050 A, c = 15.809 A for M = Sc and a = 3.918 A, c = 15.683 A for M = Cr. These compounds have long interlayer Fe-Fe distances corresponding to the c-axis length, the 15.8 A in Sc-22426 is the longest in the iron-based oxypnictide systems. Chemical flexibility of the perovskite block in this system was probed by chromium containing (Fe2As2)(Sr4Cr2O6). Different trends were found in bond angle and bond length of the new oxypnictides compared to the reported systems, such as REFePnO. Absence of superconductivity in these compounds is considered to be due to insufficient carrier concentration as in the case of undoped REFeAsO.
A new layered iron arsenide oxide (Fe2As2)(Ca4(Mg,Ti)3Oy) was discovered. Its crystal structure is tetragonal with a space group of I4/mmm consisted of the anti-fluorite type FeAs layer and blocking layer of triple perovskite cells and is identical with (Fe2As2)(Sr4(Sc,Ti)3O8) discovered in our previous study. The lattice constants of (Fe2As2)(Ca4(Mg,Ti)3Oy) are a = 3.877 A and c = 33.37 A. This compound exhibited bulk superconductivity up to 43 K in susceptibility measurement without intentional carrier doping. A resistivity drop was observed at ~47 K and zero resistance was achieved at 42 K. These values correspond to the second highest Tc among the layered iron-based superconductors after REFeAsO system.
176 - H. Ogino , S. Sato , Y. Matsumura 2010
Structural features of newly found perovskite-based iron pnictide oxide system have been systematically studied. Compared to REFePnO system, perovskite-based system tend to have lower Pn-Fe-Pn angle and higher pnictogen height owing to low electronegativity of alkaline earth metal and small repulsive force between pnictogen and oxygen atoms. As-Fe-As angles of (Fe2As2)(Sr4Cr2O6), (Fe2As2)(Sr4V2O6) and (Fe2Pn2)(Sr4MgTiO6) are close to ideal tetrahedron and those pnictogen heights of about 1.40 A are close to NdFeAsO with optimized carrier concentration. These structural features of this system may leads to realization of high Tc superconductivity.
A new layered iron arsenide oxide (Fe2As2)(Ca5(Mg,Ti)4Oy) and its structural derivative were found in the Fe-As-Ca-Mg-Ti-O system. The crystal structure of (Fe2As2)(Ca5(Mg,Ti)4Oy) is identical to that of (Fe2As2)(Ca5(Sc,Ti)4Oy), which was reported in our previous study. The lattice constants of this compound are a = 3.86(4) A and c = 41.05(2) A. In addition, another phase with a thicker blocking layer was found. The structure of the compound and its derivative was tentatively assigned through STEM observation as (Fe2As2)(Ca8(Mg,Ti)6Oy) with sextuple perovskite-type sheets divided by a rock salt layer. The interlayer Fe-Fe distance of this compound is ~30 A. The compound and its derivative exhibited bulk superconductivity, as found from magnetization and resistivity measurements.
We have discovered first homologous series of iron pnictide oxide superconductors (Fe2As2)(Can+1(Sc,Ti)nOy) [n = 3,4,5]. These compounds have extremely thick blocking layers up to quintuple perovskite oxide layers sandwiched by the Fe2As2 layers. These samples exhibited bulk superconductivity with relatively high Tc up to 42 K. The relationship between Tc and the iron-plane interlayer distance suggested that superconductivity due to the mono Fe2As2 layer is substantially 40 K-class.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا