Do you want to publish a course? Click here

Host galaxies of luminous quasars: population synthesis of optical off-axis spectra

100   0   0.0 ( 0 )
 Added by Isak Wold
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is increasing evidence of a connection between AGN activity and galaxy evolution. To obtain further insight into this potentially important evolutionary phase, we analyse the properties of quasar host galaxies. In this paper, we present a population synthesis modeling technique for off-axis spectra, the results of which constrain host colour and the stellar ages of luminous quasars (M_V(nuc)<-23). Our technique is similar to well established quiescent-galaxy models, modified to accommodate scattered nuclear light (a combination of atmospheric, instrumental and host galaxy scattered light) observed off axis. In our model, subtraction of residual scattered quasar light is performed, while simultaneously modeling the constituent stellar populations of the host galaxy. The reliability of this technique is tested via a Monte-Carlo routine in which the correspondence between synthetic spectra with known parameters and the model output is determined. Application of this model to a preliminary sample of 10 objects is presented and compared to previous studies. Spectroscopic data was obtained via long-slit and integral-field unit observations on the Keck and WIYN telescopes. We confirm that elliptical quasar hosts are distinguishable (bluer) from inactive ellipticals in rest frame B-V colour. Additionally, we note a trend for radio luminous (L_5GHz > 10^40 erg s^-1) quasars to be located in redder host galaxies in comparison to their less luminous radio counterparts. While the host colour and age of our radio luminous sample is in close proximity to the green valley, our radio faint sample is consistent with quiescent star-forming galaxies. However, further observations are needed to confirm these results. Finally, we discuss future applications for our technique on a larger sample of objects being obtained via SALT and WIYN telescope observing campaigns.



rate research

Read More

We present the analysis of a sample of 20 bright low-redshift quasars (M_B<-23 and z < 0.35) observed spectroscopically with the VLT. The FORS1 spectra, obtained in Multi Object Spectroscopy (MOS) mode, allow to observe simultaneously the quasars and several reference stars used to spatially deconvolve the data. Applying the MCS deconvolution method, we are able to separate the individual spectra of the quasar and of the underlying host galaxy. Contrary to some previous claims, we find that luminous quasars are not exclusively hosted by massive ellipticals. Most quasar host galaxies harbour large amounts of gas, irrespective of their morphological type. Moreover, the stellar content of half of the hosts is a young Sc-like population, associated with a rather low metallicity interstellar medium. A significant fraction of the galaxies contain gas ionized at large distances by the quasar radiation. This large distance ionization is always associated with signs of gravitational interactions (as detected from images or disturbed rotation curves). The spectra of the quasars themselves provide evidence that gravitational interactions bring dust and gas in the immediate surrounding of the super massive black hole, allowing to feed it. The quasar activity might thus be triggered (1) in young gas-rich spiral galaxies by local events and (2) in more evolved galaxies by gravitational interactions or collisions. The latter mechanism gives rises to the most powerful quasars. Finally, we derive mass models for the isolated spiral host galaxies and we show that the most reliable estimators of the systemic redshift in the quasar spectrum are the tips of the Ha and Hb lines.
92 - Xiaohui Fan 2019
The discovery of luminous quasars at redshifts up to 7.5 demonstrates the existence of several billion M_sun supermassive black holes (SMBHs) less than a billion years after the Big Bang. They are accompanied by intense star formation in their host galaxies, pinpointing sites of massive galaxy assembly in the early universe, while their absorption spectra reveal an increasing neutral intergalactic medium (IGM) at the epoch of reionization. Extrapolating from the rapid evolution of the quasar density at z=5-7, we expect that there is only one luminous quasar powered by a billion M_sun SMBH in the entire observable universe at z~9. In the next decade, new wide-field, deep near-infrared (NIR) sky surveys will push the redshift frontier to the first luminous quasars at z~9-10; the combination with new deep X-ray surveys will probe fainter quasar populations that trace earlier phases of SMBH growth. The identification of these record-breaking quasars, and the measurements of their BH masses and accretion properties require sensitive spectroscopic observations with next generation of ground-based and space telescopes at NIR wavelengths. High-resolution integral-field spectroscopy at NIR, and observations at millimeter and radio wavelengths, will together provide a panchromatic view of the quasar host galaxies and their galactic environment at cosmic dawn, connecting SMBH growth with the rise of the earliest massive galaxies. Systematic surveys and multiwavelength follow-up observations of the earliest luminous quasars will strongly constrain the seeding and growth of the first SMBHs in the universe, and provide the best lines of sight to study the history of reionization.
The most heavily-obscured, luminous quasars might represent a specific phase of the evolution of actively accreting supermassive black holes and their host galaxies, possibly related to mergers. We investigated a sample of the most luminous quasars at $zapprox 1-3$ in the GOODS fields, selected in the mid-infrared band through detailed spectral energy distribution (SED) decomposition. The vast majority of these quasars (~80%) are obscured in the X-ray band and ~30% of them to such an extent, that they are undetected in some of the deepest (2 and 4 Ms) Chandra X-ray data. Although no clear relation is found between the star-formation rate of the host galaxies and the X-ray obscuration, we find a higher incidence of heavily-obscured quasars in disturbed/merging galaxies compared to the unobscured ones, thus possibly representing an earlier stage of evolution, after which the system is relaxing and becoming unobscured.
56 - H.-W. Rix 1999
We present H-band observations of gravitationally lensed QSO host galaxies obtained with NICMOS on HST as part of the CfA-Arizona-Gravitational-Lens-Survey (CASTLES). The detections are greatly facilitated by the lensing magnification in these systems; we find that most hosts of radio-quiet QSOs (RQQ) at z~2 are of modest luminosity (L<L_*). They are 2-5 times fainter than the hosts of radio-loud QSOs at the same epoch. Compared to low redshifts, RQQ hosts at z~2 also support higher nuclear luminosities at given stellar host mass. This suggests that the supermassive black holes at their centers grew faster at early epochs than the stellar body of their surrounding host galaxies.
We present stellar velocity dispersion measurements in the host galaxies of 10 luminous quasars (M_V < -23) using the Ca H&K lines in off-nuclear spectra. We combine these data with effective radii and magnitudes from the literature to place the host galaxies on the Fundamental Plane (FP) where their properties are compared to other types of galaxies. We find that the radio-loud (RL) QSO hosts have similar properties to massive elliptical galaxies, while the radio-quiet (RQ) hosts are more similar to intermediate mass galaxies. The RL hosts lie at the upper extreme of the FP due to their large velocity dispersions (<sigma_*> = 321 km s^-1), low surface brightness (<mu_e(r)> = 20.8 mag arcsec^-2), and large effective radii (<R_e> = 11.4 kpc), and have <M_*> = 1.5 x 10^12 M_sun and <M/L> = 12.4. In contrast, properties of the RQ hosts are <sigma_*> = 241 km s^-1, <M_*> ~ 4.4 x 10^11 M_sun, and <M/L> ~ 5.3. The distinction between these galaxies occurs at sigma_* ~ 300 km s^-1, R_e ~ 6 kpc, and corresponding M_* ~ 5.9 +/- 3.5 x 10^11 M_sun. Our data support previous results that PG QSOs are related to gas-rich galaxy mergers that form intermediate-mass galaxies, while RL QSOs reside in massive early-type galaxies, most of which also show signs of recent mergers or interactions. Most previous work has drawn these conclusions by using estimates of the black hole mass and inferring host galaxy properties from that, while here we have relied purely on directly measured host galaxy properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا