No Arabic abstract
This investigation is devoted to the solutions of Einsteins field equations for a circularly symmetric anisotropic fluid, with kinematic self-similarity of the first kind, in $(2+1)$-dimensional spacetimes. In the case where the radial pressure vanishes, we show that there exists a solution of the equations that represents the gravitational collapse of an anisotropic fluid, and this collapse will eventually form a black hole, even when it is constituted by the phantom energy.
A C-metric type solution for general relativity with cosmological constant is presented in 2+1 dimensions. It is interpreted as a three-dimensional black hole accelerated by a strut. Positive values of the cosmological constant are admissible too. Some embeddings of this metric in the 3+1 space-time are considered: accelerating BTZ black string and a black ring where the gravitational force is sustained by the acceleration.
We study the evolution of an anisotropic shear-free fluid with heat flux and kinematic self-similarity of the second kind. We found a class of solution to the Einstein field equations by assuming that the part of the tangential pressure which is explicitly time dependent of the fluid is zero and that the fluid moves along time-like geodesics. The energy conditions, geometrical and physical properties of the solutions are studied. The energy conditions are all satisfied at the beginning of the collapse but when the system approaches the singularity the energy conditions are violated, allowing for the appearance of an attractive phantom energy. We have found that, depending on the self-similar parameter $alpha$ and the geometrical radius, they may represent a naked singularity. We speculate that the apparent horizon disappears due to the emergence of exotic energy at the end of the collapse, or due to the characteristics of null acceleration systems as shown by recent work.
Interested in the collapse of a radiating star, we study the temporal evolution of a fluid with heat flux and bulk viscosity, including anisotropic pressure. As a starting point, we adopt an initial configuration that satisfies the regularities conditions as well as the energy conditions to a certain range of the mass-radius ratio for the star, defining acceptable models. For this set of models, we verify that the energy conditions remain satisfied until the black hole formation. Astrophysical relevant quantities, such as the luminosity perceived by an observer at infinity, the time of event horizon formation and the loss of mass during the collapse are presented.
We discuss the prospects of gravitational lensing of gravitational waves (GWs) coming from core-collapse supernovae (CCSN). As the CCSN GW signal can only be detected from within our own Galaxy and the local group by current and upcoming ground-based GW detectors, we focus on microlensing. We introduce a new technique based on analysis of the power spectrum and association of peaks of the power spectrum with the peaks of the amplification factor to identify lensed signals. We validate our method by applying it on the CCSN-like mock signals lensed by a point mass lens. We find that the lensed and unlensed signal can be differentiated using the association of peaks by more than one sigma for lens masses larger than 150 solar masses. We also study the correlation integral between the power spectra and corresponding amplification factor. This statistical approach is able to differentiate between unlensed and lensed signals for lenses as small as 15 solar masses. Further, we demonstrate that this method can be used to estimate the mass of a lens in case the signal is lensed. The power spectrum based analysis is general and can be applied to any broad band signal and is especially useful for incoherent signals.
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (GR) minimally coupled to a massless scalar field. We first show results from the weak EdGB coupling limit, where we obtain solutions that smoothly approach those of the Einstein-Klein-Gordon system of GR. Here, in the strong field case, though our code does not utilize horizon penetrating coordinates, we nevertheless find tentative evidence that approaching black hole formation the EdGB modifications cause the growth of scalar field hair, consistent with known static black hole solutions in EdGB gravity. For the strong EdGB coupling regime, in a companion paper we first showed results that even in the weak field (i.e. far from black hole formation), the EdGB equations are of mixed type: evolution of the initially hyperbolic system of partial differential equations lead to formation of a region where their character changes to elliptic. Here, we present more details about this regime. In particular, we show that an effective energy density based on the Misner-Sharp mass is negative near these elliptic regions, and similarly the null convergence condition is violated then.