Do you want to publish a course? Click here

Equilibrium and Termination

115   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2010
and research's language is English
 Authors Vincent Danos




Ask ChatGPT about the research

We present a reduction of the termination problem for a Turing machine (in the simplified form of the Post correspondence problem) to the problem of determining whether a continuous-time Markov chain presented as a set of Kappa graph-rewriting rules has an equilibrium. It follows that the problem of whether a computable CTMC is dissipative (ie does not have an equilibrium) is undecidable.



rate research

Read More

Five algebraic notions of termination are formalised, analysed and compared: wellfoundedness or Noetherity, Lobs formula, absence of infinite iteration, absence of divergence and normalisation. The study is based on modal semirings, which are additively idempotent semirings with forward and backward modal operators. To model infinite behaviours, idempotent semirings are extended to divergence semirings, divergence Kleene algebras and omega algebras. The resulting notions and techniques are used in calculational proofs of classical theorems of rewriting theory. These applications show that modal semirings are powerful tools for reasoning algebraically about the finite and infinite dynamics of programs and transition systems.
We present an efficient approach to prove termination of monotone programs with integer variables, an expressive class of loops that is often encountered in computer programs. Our approach is based on a lightweight static analysis method and takes advantage of simple %nice properties of monotone functions. Our preliminary implementation %beats shows that our tool has an advantage over existing tools and can prove termination for a high percentage of loops for a class of benchmarks.
In the early two-thousands, Recursive Petri nets have been introduced in order to model distributed planning of multi-agent systems for which counters and recursivity were necessary. Although Recursive Petri nets strictly extend Petri nets and context-free grammars, most of the usual problems (reachability, coverability, finiteness, boundedness and termination) were known to be solvable by using non-primitive recursive algorithms. For almost all other extended Petri nets models containing a stack, the complexity of coverability and termination are unknown or strictly larger than EXPSPACE. In contrast, we establish here that for Recursive Petri nets, the coverability, termination, boundedness and finiteness problems are EXPSPACE-complete as for Petri nets. From an expressiveness point of view, we show that coverability languages of Recursive Petri nets strictly include the union of coverability languages of Petri nets and context-free languages. Thus we get a more powerful model than Petri net for free.
143 - Claudia Faggian 2018
While a mature body of work supports the study of rewriting systems, abstract tools for Probabilistic Rewriting are still limited. In this paper we study the question of emph{uniqueness of the result} (unique limit distribution), and develop a set of proof techniques to analyze and compare emph{reduction strategies}. The goal is to have tools to support the emph{operational} analysis of emph{probabilistic} calculi (such as probabilistic lambda-calculi) whose evaluation is also non-deterministic, in the sense that different reductions are possible.
220 - Ioana Cristescu 2011
We present a type system to guarantee termination of pi-calculus processes that exploits input/output capabilities and subtyping, as originally introduced by Pierce and Sangiorgi, in order to analyse the usage of channels. We show that our system improves over previously existing proposals by accepting more processes as terminating. This increased expressiveness allows us to capture sensible programming idioms. We demonstrate how our system can be extended to handle the encoding of the simply typed lambda-calculus, and discuss questions related to type inference.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا