Do you want to publish a course? Click here

Have proto-planetary discs formed planets?

188   0   0.0 ( 0 )
 Added by Jane Greaves
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has recently been noted that many discs around T Tauri stars appear to comprise only a few Jupiter-masses of gas and dust. Using millimetre surveys of discs within six local star-formation regions, we confirm this result, and find that only a few percent of young stars have enough circumstellar material to build gas giant planets, in standard core accretion models. Since the frequency of observed exo-planets is greater than this, there is a `missing mass problem. As alternatives to simply adjusting the conversion of dust-flux to disc mass, we investigate three other classes of solution. Migration of planets could hypothetically sweep up the disc mass reservoir more efficiently, but trends in multi-planet systems do not support such a model, and theoretical models suggest that the gas accretion timescale is too short for migration to sweep the disc. Enhanced inner-disc mass reservoirs are possible, agreeing with predictions of disc evolution through self-gravity, but not adding to millimetre dust-flux as the inner disc is optically thick. Finally, the incidence of massive discs is shown to be higher at the {it proto}stellar stages, Classes 0 and I, where discs substantial enough to form planets via core accretion are abundant enough to match the frequency of exo-planets. Gravitational instability may also operate in the Class 0 epoch, where half the objects have potentially unstable discs of $ga$30 % of the stellar mass. However, recent calculations indicate that forming gas giants inside 50 AU by instability is unlikely, even in such massive discs. Overall, the results presented suggest that the canonically proto-planetary discs of Class II T Tauri stars {bf have globally low masses in dust observable at millimetre wavelengths, and conversion to larger bodies (anywhere from small rocks up to planetary cores) must already have occurred.}



rate research

Read More

When imaged at high-resolution, many proto-planetary discs show gaps and rings in their dust sub-mm continuum emission profile. These structures are widely considered to originate from local maxima in the gas pressure profile. The properties of the underlying gas structures are however unknown. In this paper we present a method to measure the dust-gas coupling $alpha/St$ and the width of the gas pressure bumps affecting the dust distribution, applying high-precision techniques to extract the gas rotation curve from emission lines data-cubes. As a proof-of-concept, we then apply the method to two discs with prominent sub-structure, HD163296 and AS 209. We find that in all cases the gas structures are larger than in the dust, confirming that the rings are pressure traps. Although the grains are sufficiently decoupled from the gas to be radially concentrated, we find that the degree of coupling of the dust is relatively good ($alpha/St sim 0.1$). We can therefore reject scenarios in which the disc turbulence is very low and the dust has grown significantly. If we further assume that the dust grain sizes are set by turbulent fragmentation, we find high values of the $alpha$ turbulent parameter ($alpha sim 10^{-2}$). Alternatively, solutions with smaller turbulence are still compatible with our analysis if another process is limiting grain growth. For HD163296, recent measurements of the disc mass suggest that this is the case if the grain size is 1mm. Future constraints on the dust spectral indices will help to discriminate between the two alternatives.
A correlation between proto-planetary disc radii and sub-mm fluxes has been recently reported. In this Letter we show that the correlation is a sensitive probe of grain growth processes. Using models of grain growth and drift, we have shown in a companion paper that the observed disc radii trace where the dust grains are large enough to have a significant sub-mm opacity. We show that the observed correlation emerges naturally if the maximum grain size is set by radial drift, implying relatively low values of the viscous $alpha$ parameter $ lesssim 0.001$. In this case the relation has an almost universal normalisation, while if the grain size is set by fragmentation the flux at a given radius depends on the dust-to-gas ratio. We highlight two observational consequences of the fact that radial drift limits the grain size. The first is that the dust masses measured from the sub-mm could be overestimated by a factor of a few. The second is that the correlation should be present also at longer wavelengths (e.g. 3mm), with a normalisation factor that scales as the square of the observing frequency as in the optically thick case.
Protoplanetary disks contain structures such as gaps, rings, and spirals, which are thought to be produced by the interaction between the disk and embedded protoplanets. However, only a few planet candidates are found orbiting within protoplanetary disks, and most of them are being challenged as having been confused with disk features. We aim to discover more proto-planetary candidates with MUSE, with a secondary aim of improving the high-resolution spectral differential imaging (HRSDI) technique by analyzing the instrumental residuals of MUSE. We analyzed MUSE observations of five young stars and applied the HRSDI technique to perform high-contrast imaging. With a 30 min integration time, MUSE can reach 5$sigma$ detection limits in apparent H$alpha$ line flux down to 10$^{-14}$ and 10$^{-15}$ erg s$^{-1}$ cm$^{-2}$ at 0.075 and 0.25, respectively. In addition to PDS 70 b and c, we did not detect any clear accretion signatures in PDS 70, J1850-3147, and V1094 Sco down to 0.1. MUSE avoids the small sample statistics problem by measuring the noise characteristics in the spatial direction at multiple wavelengths. We detected two asymmetric atomic jets in HD 163296. The HRSDI technique when applied to MUSE data allows us to reach the photon noise limit at small separations (i.e., < 0.5). With a higher spectral resolution, MUSE can achieve fainter detection limits in apparent line flux than SPHERE/ZIMPOL by a factor of $sim$5. MUSE has some instrumental issues that limit the contrast that appear in cases with strong point sources, which can be either a spatial point source due to high Strehl observations or a spectral point source due to a high line-to-continuum ratio. We modified the HRSDI technique to better handle the instrumental artifacts and improve the detection limits.
During the evolution of proto-planetary disc, photo-evaporations of both central and external stars play important roles. Considering the complicated radiation surroundings in the clusters, where the star formed, the proto-planetary discs survive in different lifetimes due to flyby events. In this paper, we mainly focus on the disc around a T Tauri star, which encounters with another main-sequence star with different temperatures in hyperbolic orbits with different peri-center distances, eccentricities and inclinations. We find the criterion for gap-opening due to photo-evaporation of central star after the flyby event. A gap is opened in the late stage of gas disc, and induce that the gap only influence the planet formation and migration limitedly. If the flyby orbit has a moderate value of peri-center distance, which weakly depends on the eccentricity and inclination, the external photo-evaporation lead to a maximum mass loss during the flyby event. Flyby stars in orbits with smaller eccentricities or larger inclinations induce larger mass loss. Adopting a simple multiple flyby models, we conclude that in open clusters, gas discs usually survive in typical lifetimes between 1 and 10 Myr, except there are many massive stars in dense open clusters. In globular clusters, discs disperse very quickly and hardly produce the gas giant planets. The fast-depleted discs are probably responsible for the null detection of giant planets in globular clusters.
The formation, structure and evolution of protoplanetary discs is considered. The formation of giant planets within the environment of these models is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا