We say that a graph is intrinsically knotted or completely 3-linked if every embedding of the graph into the 3-sphere contains a nontrivial knot or a 3-component link any of whose 2-component sublink is nonsplittable. We show that a graph obtained from the complete graph on seven vertices by a finite sequence of $triangle Y$-exchanges and $Y triangle$-exchanges is a minor-minimal intrinsically knotted or completely 3-linked graph.