Some variations of the reduction of one-loop Feynman tensor integrals


Abstract in English

We present a new algorithm for the reduction of one-loop emph{tensor} Feynman integrals with $nleq 4$ external legs to emph{scalar} Feynman integrals $I_n^D$ with $n=3,4$ legs in $D$ dimensions, where $D=d+2l$ with integer $l geq 0$ and generic dimension $d=4-2epsilon$, thus avoiding the appearance of inverse Gram determinants $()_4$. As long as $()_4 eq 0$, the integrals $I_{3,4}^D$ with $D>d$ may be further expressed by the usual dimensionally regularized scalar functions $I_{2,3,4}^d$. The integrals $I_{4}^D$ are known at $()_4 equiv 0$, so that we may extend the numerics to small, non-vanishing $()_4$ by applying a dimensional recurrence relation. A numerical example is worked out. Together with a recursive reduction of 6- and 5-point functions, derived earlier, the calculational scheme allows a stabilized reduction of $n$-point functions with $nleq 6$ at arbitrary phase space points. The algorithm is worked out explicitely for tensors of rank $Rleq n$.

Download