In this paper we review a proposed geometrical formulation of quantum mechanics. We argue that this geometrization makes available mathematical methods from classical mechanics to the quantum frame work. We apply this formulation to the study of separability and entanglement for states of composite quantum systems.
The existing relation between the tomographic description of quantum states and the convolution algebra of certain discrete groupoids represented on Hilbert spaces will be discussed. The realizations of groupoid algebras based on qudit, photon-number (Fock) states and symplectic tomography quantizers and dequantizers will be constructed. Conditions for identifying the convolution product of groupoid functions and the star--product arising from a quantization--dequantization scheme will be given. A tomographic approach to construct quasi--distributions out of suitable immersions of groupoids into Hilbert spaces will be formulated and, finally, intertwining kernels for such generalized symplectic tomograms will be evaluated explicitly.
We consider the geometrization of quantum mechanics. We then focus on the pull-back of the Fubini-Study metric tensor field from the projective Hibert space to the orbits of the local unitary groups. An inner product on these tensor fields allows us to obtain functions which are invariant under the considered local unitary groups. This procedure paves the way to an algorithmic approach to the identification of entanglement monotone candidates. Finally, a link between the Fubini-Study metric and a quantum version of the Fisher information metric is discussed.
In this paper, the general disagreement of the geometrical lyapunov exponent with lyapunov exponent from tangent dynamics is addressed. It is shown in a quite general way that the vector field of geodesic spread $xi^k_G$ is not equivalent to the tangent dynamics vector $xi^k_T$ if the parameterization is not affine and that results regarding dynamical stability obtained in the geometrical framework can differ qualitatively from those in the tangent dynamics. It is also proved in a general way that in the case of Jacobi metric -frequently used non affine parameterization-, $xi^k_G$ satisfies differential equations which differ from the equations of the tangent dynamics in terms that produce parametric resonance, therefore, positive exponents for systems in stable regimes.
This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Berry curvature, while its left leg is shown to lead to more general realizations of the density operator which have recently appeared in quantum molecular dynamics. Finally, the paper shows how alternative representations of both the density matrix and the classical density are equivariant momentum maps generating new Clebsch representations for both quantum and classical dynamics. Uhlmanns density matrix and Koopman-von Neumann wavefunctions are shown to be special cases of this construction.
Diagonalizable pseudo-Hermitian Hamiltonians with real and discrete spectra, which are superpartners of Hermitian Hamiltonians, must be $eta$-pseudo-Hermitian with Hermitian, positive-definite and non-singular $eta$ operators. We show that despite the fact that an $eta$ operator produced by a supersymmetric transformation, corresponding to the exact supersymmetry, is singular, it can be used to find the eigenfunctions of a Hermitian operator equivalent to the given pseudo-Hermitian Hamiltonian. Once the eigenfunctions of the Hermitian operator are found the operator may be reconstructed with the help of the spectral decomposition.