No Arabic abstract
We present new photometric and spectroscopic observations of an unusual luminous blue variable (LBV) in NGC 3432, covering three major outbursts in October 2008, April 2009 and November 2009. Previously, this star experienced an outburst also in 2000 (known as SN 2000ch). During outbursts the star reached an absolute magnitude between -12.1 and -12.8. Its spectrum showed H, He I and Fe II lines with P-Cygni profiles during and soon after the eruptive phases, while only intermediate-width lines in pure emission (including He II 4686A were visible during quiescence. The fast-evolving light curve soon after the outbursts, the quasi-modulated light curve, the peak magnitude and the overall spectral properties are consistent with multiple episodes of variability of an extremely active LBV. However, the widths of the spectral lines indicate unusually high wind velocities (1500-2800 km/s), similar to those observed in Wolf-Rayet stars. Although modulated light curves are typical of LBVs during the S-Dor variability phase, the luminous maxima and the high frequency of outbursts are unexpected in S-Dor variables. Such extreme variability may be associated with repeated ejection episodes during a giant eruption of an LBV. Alternatively, it may be indicative of a high level of instability shortly preceding the core-collapse or due to interaction with a massive, binary companion. In this context, the variable in NGC 3432 shares some similarities with the famous stellar system HD 5980 in the Small Magellanic Cloud, which includes an erupting LBV and an early Wolf-Rayet star.
We have found three new LBV candidates in the star-forming galaxy NGC 4736. They show typical well-known LBV spectra, broad and strong hydrogen lines, He I lines, many Fe II lines, and forbidden [Fe II] and [Fe III]. Using archival Hubble Space Telescope and ground-based telescope data, we have estimated the bolometric magnitudes of these objects from -8.4 to -11.5, temperatures, and reddening. Source NGC 4736_1 (Mv = -10.2 +/- 0.1 mag) demonstrated variability between 2005 and 2018 as Delta V = 1.1 mag and Delta B = 0.82 mag, the object belongs to LBV stars. NGC 4736_2 (Mv < -8.6 mag) shows P Cyg profiles and its spectrum has changed from 2015 to 2018. The brightness variability of NGC 4736_2 is Delta V = 0.5 mag and Delta B = 0.4 mag. In NGC 4736_3 (Mv = -8.2 +/- 0.2 mag), we found strong nebular lines, broad wings of hydrogen; the brightness variation is only 0.2 mag. Therefore, the last two objects may reside to LBV candidates.
We search for LBV stars in galaxies outside the Local Group. Here we present a study of two bright $Halpha$ sources in the NGC 247 galaxy. Object j004703.27-204708.4 ($M_V=-9.08 pm 0.15^m$) shows the spectral lines typical for well-studied LBV stars: broad and bright emission lines of hydrogen and helium He I with P Cyg profiles, emission lines of iron Fe II, silicon Si II, nitrogen N II and carbon C II, forbidden iron [Fe II] and nitrogen [N II] lines. The variability of the object is $Delta B = 0.74pm0.09^m$ and $Delta V = 0.88pm0.09^m$, which makes it reliable LBV candidate. The star j004702.18-204739.93 ($M_V=-9.66 pm 0.23^m$) shows many emission lines of iron Fe II, forbidden iron lines [Fe II], bright hydrogen lines with broad wings, and also forbidden lines of oxygen [O I] and calcium [Ca II] formed in the circumstellar matter. The study of the light curve of this star also did not reveal significant variations in brightness ($Delta V = 0.29pm0.09^m$). We obtained estimates of interstellar absorption, the photosphere temperature, as well as bolometric magnitudes $M_text{bol}=-10.5^{+0.5}_{-0.4}$ and $M_text{bol}=-10.8^{+0.5}_{-0.6}$, which corresponds to bolometric luminosities $log(L_text{bol}/L_{odot})=6.11^{+0.20}_{-0.16}$ and $6.24^{+0.20}_{-0.25}$ for j004703.27-204708.4 and j004702.18-204739.93 respectively. Thus, the object j004703.27-204708.4 remains a reliable LBV candidate, while the object j004702.18-204739.93 can be classified as B[e]-supergiant.
We study five Luminous Blue Variable (LBV) candidates in the Andromeda galaxy and one more (MN112) in the Milky Way. We obtain the same-epoch near-infrared (NIR) and optical spectra on the 3.5-meter telescope at the Apache Point Observatory and on the 6-meter telescope of the SAO RAS. The candidates show typical LBV features in their spectra: broad and strong hydrogen lines, HeI, FeII, and [FeII] lines. We estimate the temperatures, reddening, radii and luminosities of the stars using their spectral energy distributions. Bolometric luminosities of the candidates are similar to those of known LBV stars in the Andromeda galaxy. One candidate, J004341.84+411112.0, demonstrates photometric variability (about 0.27 mag in V band), which allows us to classify it as a LBV. The star J004415.04+420156.2 shows characteristics typical for B[e]-supergiants. The star J004411.36+413257.2 is classified as FeII star. We confirm that the stars J004621.08+421308.2 and J004507.65+413740.8 are warm hypergiants. We for the first time obtain NIR spectrum of the Galactic LBV candidate MN112. We use both optical and NIR spectra of MN112 for comparison with similar stars in M31 and notice identical spectra and the same temperature in the J004341.84+411112.0. This allows us to confirm that MN112 is a LBV, which should show its brightness variability in longer time span observations.
We show that Westerlund 1 is the likely birth cluster of the runaway bona fide LBV MN44.
(abridged) A detailed study of the blue supergiant UIT005 (B2-2.5Ia+) in M33 is presented. The results of our quantitative spectral analysis indicate that the star is a very luminous, log(L/Lsun)~5.9 dex, and massive, M~50 Msun, object, showing a very high nitrogen-to-oxygen ratio in its surface (N/O~8, by mass). Based on the derived Mg and Si abundances, we argue that this high N/O ratio cannot be the result of an initial low O content due to its location on the disk of M33, known to present a steep metallicity gradient. In combination with the He abundance, the most plausible interpretation is that UIT005 is in an advanced stage of evolution, showing in its surface N enrichment and O depletion resulting from mixing with CNO processed material from the stellar interior. A comparison with the predictions of current stellar evolutionary models indicates that there are significant discrepancies, in particular with regard to the degree of chemical processing, with the models predicting a much lower degree of O depletion than observed. At the same time, the mass-loss rate derived in our analysis is an order of magnitude lower than the values considered in the evolutionary calculations. Based on a study of the surrounding stellar population and the nearby cluster NGC588, using WFPC2 photometry, we suggest that UIT005 could be in fact a runaway star from this cluster.