Do you want to publish a course? Click here

Probing thermonuclear supernova explosions with neutrinos

108   0   0.0 ( 0 )
 Added by Andrzej Odrzywolek
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims: We present neutrino light curves and energy spectra for two representative type Ia supernova explosion models: a pure deflagration and a delayed detonation. Methods: We calculate the neutrino flux from $beta$ processes using nuclear statistical equilibrium abundances convoluted with approximate neutrino spectra of the individual nuclei and the thermal neutrino spectrum (pair+plasma). Results: Although the two considered thermonuclear supernova explosion scenarios are expected to produce almost identical electromagnetic output, their neutrino signatures appear vastly different, which allow an unambiguous identification of the explosion mechanism: a pure deflagration produces a single peak in the neutrino light curve, while the addition of the second maximum characterizes a delayed-detonation. We identified the following main contributors to the neutrino signal: (1) weak electron neutrino emission from electron captures (in particular on the protons Co55 and Ni56) and numerous beta-active nuclei produced by the thermonuclear flame and/or detonation front, (2) electron antineutrinos from positron captures on neutrons, and (3) the thermal emission from pair annihilation. We estimate that a pure deflagration supernova explosion at a distance of 1 kpc would trigger about 14 events in the future 50 kt liquid scintillator detector and some 19 events in a 0.5 Mt water Cherenkov-type detector. Conclusions: While in contrast to core-collapse supernovae neutrinos carry only a very small fraction of the energy produced in the thermonuclear supernova explosion, the SN Ia neutrino signal provides information that allows us to unambiguously distinguish between different possible explosion scenarios. These studies will become feasible with the next generation of proposed neutrino observatories.



rate research

Read More

The next time a core-collapse supernova (SN) explodes in our galaxy, vari- ous detectors will be ready and waiting to detect its emissions of gravitational waves (GWs) and neutrinos. Current numerical simulations have successfully introduced multi-dimensional effects to produce exploding SN models, but thus far the explosion mechanism is not well understood. In this paper, we focus on an investigation of progenitor core rotation via comparison of the start time of GW emission and that of the neutronization burst. The GW and neutrino de- tectors are assumed to be, respectively, the KAGRA detector and a co-located gadolinium-loaded water Cherenkov detector, either EGADS or GADZOOKS!. Our detection simulation studies show that for a nearby supernova (0.2 kpc) we can confirm the lack of core rotation close to 100% of the time, and the presence of core rotation about 90% of the time. Using this approach there is also po- tential to confirm rotation for considerably more distant Milky Way supernova explosions.
New limits on the weak mixing angle and on the electron neutrino effective charge radius in the low energy regime, below 100 MeV, are obtained from a combined fit of all electron-(anti)neutrino electron elastic scattering measurements. We have included the recent TEXONO measurement with a CsI (Tl) detector. Only statistical error of this measurement has been taken into account. Weak mixing angle is found to be sin^2 theta_W = 0.255 +0.022 -0.023. The electron neutrino effective charge radius squared is bounded to be r^2 = (0.9 +0.9 -1.0) x 10^{-32} cm^2. The sensitivity of future low energy neutrino experiments to nonstandard interactions of neutrinos with quarks is also discussed.
Supernova explosions are one of the most energetic--and potentially lethal--phenomena in the Universe. Scientists have speculated for decades about the possible consequences for life on Earth of a nearby supernova, but plausible candidates for such an event were lacking. Here we show that the Scorpius-Centaurus OB association, a group of young stars currently located at~130 parsecs from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. We find that the deposition on Earth of 60Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that ~2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction.
We analyze the possibility of probing non-standard neutrino interactions (NSI, for short) through the detection of neutrinos produced in a future galactic supernova (SN).We consider the effect of NSI on the neutrino propagation through the SN envelop e within a three-neutrino framework, paying special attention to the inclusion of NSI-induced resonant
123 - Yudai Suwa 2019
We derive a `Kompaneets equation for neutrinos, which describes how the distribution function of neutrinos interacting with matter deviates from a Fermi-Dirac distribution with zero chemical potential. To this end, we expand the collision integral in the Boltzmann equation of neutrinos up to the second order in energy transfer between matter and neutrinos. The distortion of the neutrino distribution function changes the rate at which neutrinos heat matter, as the rate is proportional to the mean square energy of neutrinos, $E_ u^2$. For electron-type neutrinos the enhancement in $E_ u^2$ over its thermal value is given approximately by $E_ u^2/E_{ u,rm thermal}^2=1+0.086(V/0.1)^2$ where $V$ is the bulk velocity of nucleons, while for the other neutrino species the enhancement is $(1+delta_v)^3$, where $delta_v=mV^2/3k_BT$ is the kinetic energy of nucleons divided by the thermal energy. This enhancement has a significant implication for supernova explosions, as it would aid neutrino-driven explosions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا