Do you want to publish a course? Click here

Nucleon-Nucleon Scattering in a Harmonic Potential

164   0   0.0 ( 0 )
 Added by Thomas Luu
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

The discrete energy-eigenvalues of two nucleons interacting with a finite-range nuclear force and confined to a harmonic potential are used to numerically reconstruct the free-space scattering phase shifts. The extracted phase shifts are compared to those obtained from the exact continuum scattering solution and agree within the uncertainties of the calculations. Our results suggest that it might be possible to determine the amplitudes for the scattering of complex systems, such as n-d, n-t or n-alpha, from the energy-eigenvalues confined to finite volumes using ab-initio bound-state techniques.



rate research

Read More

91 - M. R. Robilotta 2006
In the rest frame of a many-body system, used in the calculation of its static and scattering properties, the center of mass of a two-body subsystem is allowed to drift. We show, in a model independent way, that drift corrections to the nucleon-nucleon potential are relatively large and arise from both one- and two-pion exchange processes. As far as chiral symmetry is concerned, corrections to these processes begin respectively at $cO(q^2)$ and $cO(q^4)$. The two-pion exchange interaction also yields a new spin structure, that promotes the presence of $P$ waves in trinuclei and is associated with profile functions which do not coincide with neither central nor spin-orbit ones. In principle, the new spin terms should be smaller than the $cO(q^3)$ spin-orbit components. However, in the isospin even channel, a large contribution reverts this expectation and gives rise to the prediction of important drift effects.
The nucleon-nucleon J-matrix Inverse Scattering Potential JISP16 is applied to elastic nucleon-deuteron (Nd) scattering and the deuteron breakup process at the lab. nucleon energies up to 135 MeV. The formalism of the Faddeev equations is used to obtain 3N scattering states. We compare predictions based on the JISP16 force with data and with results based on various NN interactions: the CD Bonn, the AV18, the chiral force with the semi-local regularization at the 5th order of the chiral expansion and with low-momentum interactions obtained from the CD Bonn force as well as with the predictions from the combination of the AV18 NN interaction and the Urbana IX 3N force. JISP16 provides a satisfactory description of some observables at low energies but strong deviations from data as well as from standard and chiral potential predictions with increasing energy. However, there are also polarization observables at low energies for which the JISP16 predictions differ from those based on the other forces by a factor of two. The reason for such a behavior can be traced back to the P-wave components of the JISP16 force. At higher energies the deviations can be enhanced by an interference with higher partial waves and by the properties of the JISP16 deuteron wave function. In addition, we compare the energy and angular dependence of predictions based on the JISP16 force with the results of the low-momentum forces obtained with different values of the momentum cutoff parameter. We found that such low-momentum forces can be employed to interpret the Nd elastic scattering data only below some specific energy which depends on the cutoff parameter. Since JISP16 is defined in a finite oscillator basis, it has properties similar to low momentum interactions and its application to the description of Nd scattering data is limited to a low momentum transfer region.
61 - J.-M. Sparenberg 2001
A supersymmetric inversion method is applied to the singlet $^1S_0$ and $^1P_1$ neutron-proton elastic phase shifts. The resulting central potential has a one-pion-exchange (OPE) long-range behavior and a parity-independent short-range part; it fits inverted data well. Adding a regularized OPE tensor term also allows the reproduction of the triplet $^3P_0$, $^3P_1$ and $^3S_1$ phase shifts as well as of the deuteron binding energy. The potential is thus also spin-independent (except for the OPE part) and contains no spin-orbit term. These important simplifications of the neutron-proton interaction are shown to be possible only if the potential possesses Pauli forbidden bound states, as proposed in the Moscow nucleon-nucleon model.
Motivated by the recent measurement of proton-proton spin-correlation parameters up to 2.5 GeV laboratory energy, we investigate models for nucleon-nucleon (NN) scattering above 1 GeV. Signatures for a gradual failure of the traditional meson model with increasing energy can be clearly identified. Since spin effects are large up to tens of GeV, perturbative QCD cannot be invoked to fix the problems. We discuss various theoretical scenarios and come to the conclusion that we do not have a clear phenomenological understanding of the spin-dependence of the NN interaction above 1 GeV.
We look for $DeltaDelta$ and $NDelta$ resonances by calculating $NN$ scattering phase shifts of two interacting baryon clusters of quarks with explicit coupling to these dibaryon channels. Two phenomenological nonrelativistic chiral quark models giving similar low-energy $NN$ properties are found to give significantly different dibaryon resonance structures. In the chiral quark model (ChQM), the dibaryon system does not resonate in the $NN$ $S$-waves, in agreement with the experimental SP07 $NN$ partial-wave scattering amplitudes. In the quark delocalization and color screening model (QDCSM), the $S$-wave NN resonances disappear when the nucleon size $b$ falls below 0.53 fm. Both quark models give an $IJ^P = 03^+$ $DeltaDelta$ resonance. At $b=0.52 $fm, the value favored by baryon spectrum, the resonance mass is 2390 (2420) MeV for the ChQM with quadratic (linear) confinement, and 2360 MeV for the QDCSM. Accessible from the $^3D_3^{NN}$ channel, this resonance is a promising candidate for the known isoscalar ABC structure seen more clearly in the $pn$$to $$dpipi$ production cross section at 2410 MeV in the recent preliminary data reported by the CELSIUS-WASA Collaboration. In the isovector dibaryon sector, our quark models give a bound or almost bound $^5S_2^{DeltaDelta}$ state that can give rise to a $^1D_2^{NN}$ resonance. None of the quark models used has bound $NDelta$ $P$-states that might generate odd-parity resonances.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا