Do you want to publish a course? Click here

SUSY transformations with complex factorization constants. Application to spectral singularities

135   0   0.0 ( 0 )
 Added by Boris Samsonov F
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Supersymmetric (SUSY) transformation operators corresponding to complex factorization constants are analyzed as operators acting in the Hilbert space of functions square integrable on the positive semiaxis. Obtained results are applied to Hamiltonians possessing spectral singularities which are non-Hermitian SUSY partners of selfadjoint operators. A new regularization procedure for the resolution of the identity operator in terms of continuous biorthonormal set of the non-Hermitian Hamiltonian eigenfunctions is proposed. It is also shown that the continuous spectrum eigenfunction has zero binorm (in the sense of distributions) at the singular point.



rate research

Read More

175 - Anton Dzhamay 2009
We study factorizations of rational matrix functions with simple poles on the Riemann sphere. For the quadratic case (two poles) we show, using multiplicative representations of such matrix functions, that a good coordinate system on this space is given by a mix of residue eigenvectors of the matrix and its inverse. Our approach is motivated by the theory of discrete isomonodromic transformations and their relationship with difference Painleve equations. In particular, in these coordinates, basic isomonodromic transformations take the form of the discrete Euler-Lagrange equations. Secondly we show that dPV equations, previously obtained in this context by D. Arinkin and A. Borodin, can be understood as simple relationships between the residues of such matrices and their inverses.
We define a tau function for a generic Riemann-Hilbert problem posed on a union of non-intersecting smooth closed curves with jump matrices analytic in their neighborhood. The tau function depends on parameters of the jumps and is expressed as the Fredholm determinant of an integral operator with block integrable kernel constructed in terms of elementary parametrices. Its logarithmic derivatives with respect to parameters are given by contour integrals involving these parametrices and the solution of the Riemann-Hilbert problem. In the case of one circle, the tau function coincides with Widoms determinant arising in the asymptotics of block Toeplitz matrices. Our construction gives the Jimbo-Miwa-Ueno tau function for Riemann-Hilbert problems of isomonodromic origin (Painleve VI, V, III, Garnier system, etc) and the Sato-Segal-Wilson tau function for integrable hierarchies such as Gelfand-Dickey and Drinfeld-Sokolov.
Planar supersymmetric quantum mechanical systems with separable spectral problem in curvilinear coordinates are analyzed in full generality. We explicitly construct the supersymmetric extension of the Euler/Pauli Hamiltonian describing the motion of a light particle in the field of two heavy fixed Coulombian centers. We shall also show how the SUSY Kepler/Coulomb problem arises in two different limits of this problem: either, the two centers collapse in one center - a problem separable in polar coordinates -, or, one of the two centers flies to infinity - to meet the Coulomb problem separable in parabolic coordinates.
When discussing consequences of symmetries of dynamical systems based on Noethers first theorem, most standard textbooks on classical or quantum mechanics present a conclusion stating that a global continuous Lie symmetry implies the existence of a time independent conserved Noether charge which is the generator of the action on phase space of that symmetry, and which necessarily must as well commute with the Hamiltonian. However this need not be so, nor does that statement do justice to the complete scope and reach of Noethers first theorem. Rather a much less restrictive statement applies, namely that the corresponding Noether charge as an observable over phase space may in fact possess an explicit time dependency, and yet define a constant of the motion by having a commutator with the Hamiltonian which is nonvanishing, thus indeed defining a dynamical conserved quantity. Furthermore, and this certainly within the Hamiltonian formulation, the converse statement is valid as well, namely that any dynamical constant of motion is necessarily the Noether charge of some symmetry leaving the systems action invariant up to some total time derivative contribution. The present contribution revisits these different points and their consequences, straightaway within the Hamiltonian formulation which is the most appropriate for such issues. Explicit illustrations are also provided through three general but simple enough classes of systems.
We discuss the dynamical quantum systems which turn out to be bi-unitary with respect to the same alternative Hermitian structures in a infinite-dimensional complex Hilbert space. We give a necessary and sufficient condition so that the Hermitian structures are in generic position. Finally the transformations of the bi-unitary group are explicitly obtained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا