Do you want to publish a course? Click here

Weyl group, CP and the kink-like field configurations in the effective SU(3) gauge theory

90   0   0.0 ( 0 )
 Added by Sergei Nedelko
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

Effective Lagrangian for pure Yang-Mills gauge fields invariant under the standard space-time and local gauge SU(3) transformations is considered. It is demonstrated that a set of twelve degenerated minima exists as soon as a nonzero gluon condensate is postulated. The minima are connected to each other by the parity transformations and Weyl group transformations associated with the color su(3) algebra. The presence of degenerated discrete minima in the effective potential leads to the solutions of the effective Euclidean equations of motion in the form of the kink-like gauge field configurations interpolating between different minima. Spectrum of charged scalar field in the kink background is discussed.



rate research

Read More

We compute nonequilibrium dynamics of plasma instabilities in classical-statistical lattice gauge theory in 3+1 dimensions. The simulations are done for the first time for the SU(3) gauge group relevant for quantum chromodynamics. We find a qualitatively similar behavior as compared to earlier investigations in SU(2) gauge theory. The characteristic growth rates are about 25 % lower for given energy density, such that the isotropization process is slower. Measured in units of the characteristic screening mass, the primary growth rate is independent of the number of colors.
72 - Etsuko Itou 2019
According to recent studies on resurgence scenario of quantum systems, some topological objects with fractional charges play an important role to see the resurgence structure. In this talk, we report a numerical evidence of the fractional-instantons of the SU($3$) gauge theory. The fractional-instanton appears in a weak coupling regime, if the theory is regularized by an infrared (IR) cutoff via the $1$-form twisted boundary conditions. The Polyakov loop is also measured to investigate the center symmetry and confinement. The fractional-instanton corresponds to a solution linking two of degenerate $mathbb{Z}_3$-broken vacua in the deconfinement phase. This talk is based on the paper[1].
122 - Y. M. Cho , Franklin H. Cho , 2014
We show how to generalize the previous result of the monopole condensation in SU(2) QCD to SU(3) QCD. We present the gauge independent Weyl symmetric Abelian decomposition of the SU(3) QCD which decomposes the gluons to the color neutral neurons and the colored chromons. The decomposition allows us to separate the gauge invariant and parity conserving monopole background gauge independently, and reduces the non-Abelian gauge symmetry to a discrete color reflection symmetry which is easier to handle. With this we obtain the infra-red finite and gauge invariant integral expression of the one-loop effective action which is Weyl symmetric in three SU(2) subgroups. Integrating it gauge invariantly imposing the color reflection invariance we obtain the SU(3) QCD effective potential which generates the stable monopole condensation and the mass gap. We discuss the physical implications of our result.
We study whether higher-dimensional operators in effective field theories, in particular in the Standard Model Effective Field Theory (SMEFT), can source gauge anomalies via the modification of the interactions involved in triangle diagrams. We find no evidence of such gauge anomalies at the level of dimension-6 operators that can therefore be chosen independently to each others without spoiling the consistency of SMEFT, at variance with recent claims. The underlying reason is that gauge-invariant combinations of Goldstone bosons and massive gauge fields are allowed to couple to matter currents which are not conserved. We show this in a toy model by computing the relevant triangle diagrams, as well as by working out Wess--Zumino terms in the bosonic EFT below all fermion masses. The same approach applies directly to the Standard Model both at the renormalisable level, providing a convenient and unusual way to check that the SM is anomaly free, as well as at the non-renormalisable level in SMEFT.
We determine the time evolution of fluctuations of the Polyakov loop after a quench into the deconfined phase of SU(3) gauge theory from a simple classical relativistic Lagrangian. We compare the structure factors, which indicate spinodal decomposition followed by relaxation, to those obtained via Markov Chain Monte Carlo techniques in SU(3) lattice gauge theory. We find that the time when the structure factor peaks diverges like $sim 1/k^2$ in the long-wavelength limit. This is due to formation of competing Z(3) domains for configurations where the Polyakov loop exhibits non-perturbatively large variations in space, which delay thermalization of long wavelength modes. For realistic temperatures, and away from the extreme weak-coupling limit, we find that even modes with $k$ on the order of $T$ experience delayed thermalization. Relaxation times of very long wavelength modes are found to be on the order of the size of the system; thus, the dynamics of competing domains should accompany the hydrodynamic description of the deconfined vacuum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا