Do you want to publish a course? Click here

Dynamics of Solids in the Midplane of Protoplanetary Disks: Implications for Planetesimal Formation

186   0   0.0 ( 0 )
 Added by Xue-Ning Bai
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) We present local 2D and 3D hybrid numerical simulations of particles and gas in the midplane of protoplanetary disks (PPDs) using the Athena code. The particles are coupled to gas aerodynamically, with particle-to-gas feedback included. Magnetorotational turbulence is ignored as an approximation for the dead zone of PPDs, and we ignore particle self-gravity to study the precursor of planetesimal formation. Our simulations include a wide size distribution of particles, ranging from strongly coupled particles with dimensionless stopping time tau_s=Omega t_stop=1e-4 to marginally coupled ones with tau_s=1 (where Omega is the orbital frequency, t_stop is the particle friction time), and a wide range of solid abundances. Our main results are: 1. Particles with tau_s>=0.01 actively participate in the streaming instability, generate turbulence and maintain the height of the particle layer before Kelvin-Helmholtz instability is triggered. 2. Strong particle clumping as a consequence of the streaming instability occurs when a substantial fraction of the solids are large (tau_s>=0.01) and when height-integrated solid to gas mass ratio Z is super-solar. 3. The radial drift velocity is reduced relative to the conventional Nakagawa-Sekiya-Hayashi (NSH) model, especially at high Z. We derive a generalized NSH equilibrium solution for multiple particle species which fits our results very well. 4. Collision velocity between particles with tau_s>=0.01 is dominated by differential radial drift, and is strongly reduced at larger Z. 5. There exist two positive feedback loops with respect to the enrichment of local disk solid abundance and grain growth. All these effects promote planetesimal formation.



rate research

Read More

Oumuamua, the first bona-fide interstellar planetesimal, was discovered passing through our Solar System on a hyperbolic orbit. This object was likely dynamically ejected from an extrasolar planetary system after a series of close encounters with gas giant planets. To account for Oumuamuas detection, simple arguments suggest that ~1 Earth mass of planetesimals are ejected per Solar mass of Galactic stars. However, that value assumes mono-sized planetesimals. If the planetesimal mass distribution is instead top-heavy the inferred mass in interstellar planetesimals increases to an implausibly high value. The tension between theoretical expectations for the planetesimal mass function and the observation of Oumuamua can be relieved if a small fraction (~0.1-1%) of planetesimals are tidally disrupted on the pathway to ejection into Oumuamua-sized fragments. Using a large suite of simulations of giant planet dynamics including planetesimals, we confirm that 0.1-1% of planetesimals pass within the tidal disruption radius of a gas giant on their pathway to ejection. Oumuamua may thus represent a surviving fragment of a disrupted planetesimal. Finally, we argue that an asteroidal composition is dynamically disfavoured for Oumuamua, as asteroidal planetesimals are both less abundant and ejected at a lower efficiency than cometary planetesimals.
114 - Anders Johansen , 2010
We present high-resolution computer simulations of dust dynamics and planetesimal formation in turbulence generated by the magnetorotational instability. We show that the turbulent viscosity associated with magnetorotational turbulence in a non-stratified shearing box increases when going from 256^3 to 512^3 grid points in the presence of a weak imposed magnetic field, yielding a turbulent viscosity of $alphaapprox0.003$ at high resolution. Particles representing approximately meter-sized boulders concentrate in large-scale high-pressure regions in the simulation box. The appearance of zonal flows and particle concentration in pressure bumps is relatively similar at moderate (256^3) and high (512^3) resolution. In the moderate-resolution simulation we activate particle self-gravity at a time when there is little particle concentration, in contrast with previous simulations where particle self-gravity was activated during a concentration event. We observe that bound clumps form over the next ten orbits, with initial birth masses of a few times the dwarf planet Ceres. At high resolution we activate self-gravity during a particle concentration event, leading to a burst of planetesimal formation, with clump masses ranging from a significant fraction of to several times the mass of Ceres. We present a new domain decomposition algorithm for particle-mesh schemes. Particles are spread evenly among the processors and the local gas velocity field and assigned drag forces are exchanged between a domain-decomposed mesh and discrete blocks of particles. We obtain good load balancing on up to 4096 cores even in simulations where particles sediment to the mid-plane and concentrate in pressure bumps.
Successful exoplanet surveys in the last decade have revealed that planets are ubiquitous throughout the Milky Way, and show a large diversity in mass, location and composition. At the same time, new facilities such as the Atacama Large Millimeter/submillimeter Array (ALMA) and optical/infrared facilities including Gemini/GPI have provided us with sharper images than ever before of protoplanetary disks around young stars, the birth cradles of planets. The high spatial resolution has revealed astonishing structures in disks, such as rings, gaps, asymmetries and spiral arms, and the enormous jump in sensitivity has provided the tools for both large, statistically relevant surveys and deep, sensitive molecular line studies. These observations have revolutionized our view of planet formation, disk formation and disk evolution, bringing model simulations and observations closer to the same level of detail, with many contributions from Canadian researchers on theoretical, observational and technological sides. The new results have inevitably led to a range of new questions, which require next generation instruments such as the Next Generation Very Large Array (ngVLA) and large scale optical infrared facilities. In this white paper we will discuss the current transformation in our understanding of planet formation and the next steps and challenges in connecting theory with exoplanet demographics and protoplanetary disk observations for Canadian research.
If planetesimal formation is an efficient process, as suggested by several models involving gravitational collapse of pebble clouds, then, before long, a significant part of the primordial dust mass should be absorbed in many km sized objects. A good understanding of the total amount of solids in the disk around a young star is crucial for planet formation theory. But as the mass of particles above the mm size cannot be assessed observationally, one must ask how much mass is hidden in bigger objects. We perform 0-d local simulations to study how the planetesimal to dust and pebble ratio is evolving in time and to develop an understanding of the potentially existing mass in planetesimals for a certain amount of dust and pebbles at a given disk age. We perform a parameter study based on a model considering dust growth, planetesimal formation and collisional fragmentation of planetesimals, while neglecting radial transport processes. While at early times, dust is the dominant solid particle species, there is a phase during which planetesimals make up a significant portion of the total mass starting at approximately $10^4 - 10^6$ yr. The time of this phase and the maximal total planetesimal mass strongly depend on the distance to the star $R$, the initial disk mass, and the efficiency of planetesimal formation $epsilon$. After approximately $10^6$ yr, our model predicts planetesimal collisions to dominate, which resupplies small particles. In our model, planetesimals form fast and everywhere in the disk. For a given $epsilon$, we were able to relate the dust content and mass of a given disk to its planetesimal content, providing us with some helpful basic intuition about mass distribution of solids and its dependence on underlying physical processes.
Many massive objects have been found in the outer region of the Solar system. How they were formed and evolved has not been well understood, although there have been intensive studies on accretion process of terrestrial planets. One of the mysteries is the existence of binary planetesimals with near-equal mass components and highly eccentric orbits. These binary planetesimals are quite different from the satellites observed in the asteroid belt region. The ratio of the Hill radius to the physical radius of the planetesimals is much larger for the outer region of the disk, compared to the inner region of the disk. The Hill radius increases with the semi major axis. Therefore, planetesimals in the outer region can form close and eccentric binaries, while those in the inner region would simply collide. In this paper, we carried out $N$-body simulations in different regions of the disk and studied if binaries form in the outer region of the disk. We found that large planetesimals tend to form binaries. A significant fraction of large planetesimals are components of the binaries. Planetesimals that become the components of binaries eventually collide with a third body, through three-body encounters. Thus, the existence of binaries can enhance the growth rate of planetesimals in the Trans-Neptunian Object (TNO) region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا