No Arabic abstract
The centre of our Galaxy harbours a 4 million solar mass black hole that is unusually quiet: its present X-ray luminosity is more than 10 orders of magnitude less than its Eddington luminosity. The observation of iron fluorescence and hard X-ray emission from some of the massive molecular clouds surrounding the Galactic Centre has been interpreted as an echo of a past flare. Alternatively, low-energy cosmic rays propagating inside the clouds might account for the observed emission, through inverse bremsstrahlung of low energy ions or bremsstrahlung emission of low energy electrons. Here we report the observation of a clear decay of the hard X-ray emission from the molecular cloud Sgr B2 during the past 7 years thanks to more than 20 Ms of INTEGRAL exposure. The measured decay time is compatible with the light crossing time of the molecular cloud core . Such a short timescale rules out inverse bremsstrahlung by cosmic-ray ions as the origin of the X ray emission. We also obtained 2-100 keV broadband X-ray spectra by combining INTEGRAL and XMM-Newton data and compared them with detailed models of X-ray emission due to irradiation of molecular gas by (i) low-energy cosmic-ray electrons and (ii) hard X-rays. Both models can reproduce the data equally well, but the time variability constraints and the huge cosmic ray electron luminosity required to explain the observed hard X-ray emission strongly favor the scenario in which the diffuse emission of Sgr B2 is scattered and reprocessed radiation emitted in the past by Sgr A*. Using recent parallax measurements that place Sgr B2 in front of Sgr A*, we find that the period of intense activity of Sgr A* ended between 75 and 155 years ago.
We present results of long NuSTAR (200 ks) and XMM-Newton (100 ks) observations of the Arches stellar cluster, a source of bright thermal (kT~2 keV) X-rays with prominent Fe XXV K_alpha 6.7 keV line emission and a nearby molecular cloud, characterized by an extended non-thermal hard X-ray continuum and fluorescent Fe K_alpha 6.4 keV line of a neutral or low ionization state material around the cluster. Our analysis demonstrates that the non-thermal emission of the Arches cloud underwent a dramatic change, with its homogeneous morphology, traced by fluorescent Fe K_alpha line emission, vanishing after 2012, revealing three bright clumps. The declining trend of the cloud emission, if linearly fitted, is consistent with half-life decay time of ~8 years. Such strong variations have been observed in several other molecular clouds in the Galactic Centre, including the giant molecular cloud Sgr B2, and point toward a similar propagation of illuminating fronts, presumably induced by the past flaring activity of Sgr A*.
The soft gamma-ray repeater (SGR) 0526-66 is the first-identified magnetar, and is projected within the supernova remnant N49 in the Large Magellanic Cloud. Based on our ~50 ks NuSTAR observation, we detect the quiescent-state 0526-66 for the first time in the 10-40 keV band. Based on the joint analysis of our NuSTAR and the archival Chandra ACIS data, we firmly establish the presence of the nonthermal component in the X-ray spectrum of 0526-66 in addition to the thermal emission. In the best-fit blackbody (BB) plus power law (PL) model, the slope of the PL component (photon index Gamma = 2.1) is steeper than those (Gamma > ~1.5) for other magnetars. The soft part of the X-ray spectrum can be described with a BB component with the temperature of kT = 0.43 keV. The best-fit radius (R = 6.5 km) of the X-ray-emitting area is smaller than the canonical size of a neutron star. If we assume an underlying cool BB component with the canonical radius of R = 10 km for the neutron star in addition to the hot BB component (2BB + PL model), a lower BB temperature of kT = 0.24 keV is obtained for the passively cooling neutron starssurface, while the hot spot emission with kT = 0.46 keV dominates the thermal spectrum (~85% of the thermal luminosity in the 0.5-5 keV band). The nonthermal component (Gamma ~ 1.8) is still required.
We exploited the high sensitivity of the INTEGRAL IBIS/ISGRI instrument to study the persistent hard X-ray emission of the soft gamma-ray repeater SGR 1900+14, based on ~11.6 Ms of archival data. The 22-150 keV INTEGRAL spectrum can be well fit by a power law with photon index 1.9 +/- 0.3 and flux F_x = (1.11 +/- 0.17)E-11 erg/cm^2/s (20-100 keV). A comparison with the 20-100 keV flux measured in 1997 with BeppoSAX, and possibly associated with SGR 1900+14, shows a luminosity decrease by a factor of ~5. The slope of the power law above 20 keV is consistent within the uncertainties with that of SGR 1806-20, the other persistent soft gamma-ray repeater for which a hard X-ray emission extending up to 150 keV has been reported.
We report ALMA observations with resolution $approx0.5$ at 3 mm of the extended Sgr B2 cloud in the Central Molecular Zone (CMZ). We detect 271 compact sources, most of which are smaller than 5000 AU. By ruling out alternative possibilities, we conclude that these sources consist of a mix of hypercompact HII regions and young stellar objects (YSOs). Most of the newly-detected sources are YSOs with gas envelopes which, based on their luminosities, must contain objects with stellar masses $M_*gtrsim8$ M$_odot$. Their spatial distribution spread over a $sim12times3$ pc region demonstrates that Sgr B2 is experiencing an extended star formation event, not just an isolated `starburst within the protocluster regions. Using this new sample, we examine star formation thresholds and surface density relations in Sgr B2. While all of the YSOs reside in regions of high column density ($N(H_2)gtrsim2times10^{23}$ cm$^{-2}$), not all regions of high column density contain YSOs. The observed column density threshold for star formation is substantially higher than that in solar vicinity clouds, implying either that high-mass star formation requires a higher column density or that any star formation threshold in the CMZ must be higher than in nearby clouds. The relation between the surface density of gas and stars is incompatible with extrapolations from local clouds, and instead stellar densities in Sgr B2 follow a linear $Sigma_*-Sigma_{gas}$ relation, shallower than that observed in local clouds. Together, these points suggest that a higher volume density threshold is required to explain star formation in CMZ clouds.
Located $sim100$ pc from the dynamic center of the Milky Way, the molecular cloud Sagittarius B2 (Sgr B2) is the most massive such object in the Galactic Center region. In X-rays, Sgr B2 shows a prominent neutral Fe K$alpha$ line at 6.4 keV and continuum emission beyond 10 keV, indicating high-energy, non-thermal processes in the cloud. The Sgr B2 complex is an X-ray reflection nebula whose total emissions have continued to decrease since the year 2001 as it reprocesses what are likely one or more past energetic outbursts from the supermassive black hole Sagittarius A*. The X-ray reflection model explains the observed time-variability of the Fe K$alpha$ and hard X-ray emissions, and it provides a window into the luminous evolutionary history of our nearest supermassive black hole. In light of evidence of elevated cosmic particle populations in the Galactic Center, recent interest has also focused on X-rays from Sgr B2 as a probe of low-energy (sub-GeV) cosmic particles. In contrast to the time-varying X-ray reflection, in this case we can assume that the X-ray flux contribution from interactions of low-energy cosmic particles is constant in time, such that upper limits on low-energy cosmic particle populations may be obtained using the lowest flux levels observed from the cloud. Here, we present the most recent and correspondingly dimmest NuSTAR and XMM-Newton observations of Sgr B2, from 2018. These reveal small-scale variations within lower density portions of the Sgr B2 complex, including brightening features, yet still enable the best upper limits on X-rays from low-energy cosmic particles in Sgr B2. We also present Fe K$alpha$ fluxes from cloud regions of different densities, facilitating comparison with models of ambient low-energy cosmic particle interactions throughout the cloud.