Do you want to publish a course? Click here

Low temperature hopping magnetotransport in paramagnetic single crystals of cobalt doped ZnO

119   0   0.0 ( 0 )
 Added by Simon Granville
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Long needle-shaped single crystals of Zn1-xCoxO were grown at low temperatures using a molten salt solvent technique, up to x=0.10. The conduction process at low temperatures is determined to be by Mott variable range hopping. Both pristine and cobalt doped crystals clearly exhibit a crossover from negative to positive magnetoresistance as the temperature is decreased. The positive magnetoresistance of the Zn1-xCoxO single crystals increases with increased Co concentration and reaches up to 20% at low temperatures (2.5 K) and high fields (>1 T). SQUID magnetometry confirms that the Zn1-xCoxO crystals are predominantly paramagnetic in nature and the magnetic response is independent of Co concentration. The results indicate that cobalt doping of single crystalline ZnO introduces localized electronic states and isolated Co2+ ions into the host matrix, but that the magnetotransport and magnetic properties are decoupled.



rate research

Read More

The existence of semiconductors exhibiting long-range ferromagnetic ordering at room temperature still is controversial. One particularly important issue is the presence of secondary magnetic phases such as clusters, segregations, etc... These are often tedious to detect, leading to contradictory interpretations. We show that in our cobalt doped ZnO films grown homoepitaxially on single crystalline ZnO substrates the magnetism unambiguously stems from metallic cobalt nano-inclusions. The magnetic behavior was investigated by SQUID magnetometry, x-ray magnetic circular dichroism, and AC susceptibility measurements. The results were correlated to a detailed microstructural analysis based on high resolution x-ray diffraction, transmission electron microscopy, and electron-spectroscopic imaging. No evidence for carrier mediated ferromagnetic exchange between diluted cobalt moments was found. In contrast, the combined data provide clear evidence that the observed room temperature ferromagnetic-like behavior originates from nanometer sized superparamagnetic metallic cobalt precipitates.
Native and hydrogen-plasma induced shallow traps in hydrothermally grown ZnO crystals have been investigated by charge-based deep level transient spectroscopy (Q-DLTS), photoluminescence and cathodoluminescence microanalysis. The as-grown ZnO exhibits a trap state at 23 meV, while H-doped ZnO produced by plasma doping shows two levels at 22 meV and 11 meV below the conduction band. As-grown ZnO displays the expected thermal decay of bound excitons with increasing temperature from 7 K, while we observed an anomalous behaviour of the excitonic emission in H-doped ZnO, in which its intensity increases with increasing temperature in the range 140-300 K. Based on a multitude of optical results, a qualitative model is developed which explains the Y line structural defects, which act as an electron trap with an activation energy of 11 meV, being responsible for the anomalous temperature-dependent cathodoluminescence of H-doped ZnO.
Surface acoustic wave (SAW) devices based on thin films of ZnO are a well established technology. However, SAW devices on bulk ZnO crystals are not practical at room temperature due to the significant damping caused by finite electrical conductivity of the crystal. Here, by operating at low temperatures, we demonstrate effective SAW devices on the (0001) surface of bulk ZnO crystals, including a delay line operating at SAW wavelengths of {lambda} = 4 and 6 {mu}m and a one-port resonator at a wavelength of {lambda} = 1.6 {mu}m. We find that the SAW velocity is temperature dependent, reaching $v simeq 2.68$ km/s at 10mK. Our resonator reaches a maximum quality factor of $Q_i simeq 1.5times 10^5$, demonstrating that bulk ZnO is highly viable for low temperature SAW applications. The performance of the devices is strongly correlated with the bulk conductivity, which quenches SAW transmission above about 200 K.
120 - H.Y. He , J. Hu , B.C. Pan 2009
Based on density functional theory calculations, we systematically investigate the behaviors of a H atom in Ag-doped ZnO, involving the preference sites, diffusion behaviors, the electronic structures and vibrational properties. We find that a H atom can migrate to the doped Ag to form a Ag-H complex by overcoming energy barriers of 0.3 - 1.0 eV. The lowest-energy site for H location is the bond center of a Ag-O in the basal plane. Moreover, H can migrate between this site and its equivalent sites with energy cost of less than 0.5 eV. In contrast, dissociation of such a Ag-H complex needs energy of about 1.1 - 1.3 eV. This implies that the Ag-H complexes can commonly exist in the Ag-doped ZnO, which have a negative effect on the desirable p-type carrier concentrations of Ag-doped ZnO. In addition, based on the frozen phonon calculation, the vibrational properties of ZnO with a Ag-H complex are predicted. Some new vibrational modes associated with the Ag-H complex present in the vibrational spectrum of the system.
167 - Z. Q. Liu , W. M. Lu , S. L. Lim 2012
The search for oxide-based room-temperature ferromagnetism has been one of the holy grails in condensed matter physics. Room-temperature ferromagnetism observed in Nb-doped SrTiO3 single crystals is reported in this Rapid Communication. The ferromagnetism can be eliminated by air annealing (making the samples predominantly diamagnetic) and can be recovered by subsequent vacuum annealing. The temperature dependence of magnetic moment resembles the temperature dependence of carrier density, indicating that the magnetism is closely related to the free carriers. Our results suggest that the ferromagnetism is induced by oxygen vacancies. In addition, hysteretic magnetoresistance was observed for magnetic field parallel to current, indicating that the magnetic moments are in the plane of the samples. The x-ray photoemission spectroscopy, the static time-of-flight and the dynamic secondary ion mass spectroscopy and proton induced x-ray emission measurements were performed to examine magnetic impurities, showing that the observed ferromagnetism is unlikely due to any magnetic contaminant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا