Do you want to publish a course? Click here

The orbital period in the supergiant fast X-ray transient IGR J16465--4507

119   0   0.0 ( 0 )
 Added by David Clark Dr
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Timing analysis of the INTEGRAL-IBIS and Swift-BAT light curves of the Supergiant Fast X-ray Transient (SFXT) IGR J16465-4507 has identified a period of 30.32+/-0.02 days which we interpret as the orbital period of the binary system. In addition 11 outbursts (9 of which are previously unpublished) have been found between MJD 52652 to MJD 54764, all of which occur close to the region of the orbit we regard as periastron. From the reported flux outbursts, we found a dynamical range in the interval ~30-80. Although in this regard IGR J16465-4507 cannot be considered a classical SFXT for which typical dinamical ranges are >100, still our reported values are significantly greater than that of classical persistent variable supergiant HMXBs (<20), supporting the idea that IGRJ16465-4507 is an intermediate SFXT system, much like few other similar cases reported in the literature.



rate research

Read More

Since its launch, the X-ray and gamma-ray observatory INTEGRAL satellite has revealed a new class of high-mass X-ray binaries (HMXB) displaying fast flares and hosting supergiant companion stars. Optical and infrared (OIR) observations in a multi-wavelength context are essential to understand the nature and evolution of these newly discovered celestial objects. The goal of this multiwavelength study (from ultraviolet to infrared) is to characterise the properties of IGR J16465-4507, to confirm its HMXB nature and that it hosts a supergiant star. We analysed all OIR, photometric and spectroscopic observations taken on this source, carried out at ESO facilities. Using spectroscopic data, we constrained the spectral type of the companion star between B0.5 and B1 Ib, settling the debate on the true nature of this source. We measured a high rotation velocity of v = 320 +/- 8 km/s from fitting absorption and emission lines in a stellar spectral model. We then built a spectral energy distribution from photometric observations to evaluate the origin of the different components radiating at each energy range. We finally show that, having accurately determined the spectral type of the early-B supergiant in IGR J16465-4507, we firmly support its classification as an intermediate supergiant fast X-ray transient (SFXT).
361 - D. J. Clark 2009
The supergiant fast X-ray transient (SFXT) system IGR J17544-2619 has displayed many large outbursts in the past and is considered an archetypal example of SFXTs. A search of the INTEGRAL/ISGRI data archive from MJD 52698-54354 has revealed 11 outbursts and timing analysis of the light curve identifies a period of 4.926$pm$0.001 days which we interpret as the orbital period of the system. We find that large outbursts occasionally occur outside of periastron and place an upper limit for the radius of the supergiant of <23R$_{sun}$.
224 - P. Romano , L. Ducci (3 2009
IGR J18483-0311 is an X-ray pulsar with transient X-ray activity, belonging to the new class of High Mass X-ray Binaries called Supergiant Fast X-ray Transients. This system is one of the two members of this class, together with IGR J11215-5952, where both the orbital (18.52d) and spin period (21s) are known. We report on the first complete monitoring of the X-ray activity along an entire orbital period of a Supergiant Fast X-ray Transient. These Swift observations, lasting 28d, cover more than one entire orbital phase consecutively. They are a unique data-set, which allows us to constrain the different mechanisms proposed to explain the nature of this new class of X-ray transients. We applied the new clumpy wind model for blue supergiants developed by Ducci et al. (2009), to the observed X-ray light curve. Assuming an eccentricity of e=0.4, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from 10^{18}g to 5x 10^{21}g.
301 - L. Ducci 2013
We report on the Swift/X-ray Telescope (XRT) monitoring of the field of view around the candidate supergiant fast X-ray transient (SFXT) IGR J17354-3255, which is positionally associated with the AGILE/GRID gamma-ray transient AGL J1734-3310. Our observations, which cover 11 days for a total on-source exposure of about 24 ks, span 1.2 orbital periods (P_orb=8.4474 d) and are the first sensitive monitoring of this source in the soft X-rays. These new data allow us to exploit the timing variability properties of the sources in the field to unambiguously identify the soft X-ray counterpart of IGR J17354-3255. The soft X-ray light curve shows a moderate orbital modulation and a dip. We investigated the nature of the dip by comparing the X-ray light curve with the prediction of the Bondi-Hoyle-Lyttleton accretion theory, assuming both spherical and nonspherical symmetry of the outflow from the donor star. We found that the dip cannot be explained with the X-ray orbital modulation. We propose that an eclipse or the onset of a gated mechanism is the most likely explanation for the observed light curve.
83 - C. Ferrigno , E. Bozzo , A. Sanna 2019
IGR J17503-2636 is a hard X-ray transient discovered by INTEGRAL on 2018 August 11. This was the first ever reported X-ray emission from this source. Following the discovery, follow-up observations were carried out with Swift, Chandra, NICER, and NuSTAR. We report in this paper the analysis and results obtained from all these X-ray data. Based on the fast variability in the X-ray domain, the spectral energy distribution in the 0.5-80 keV energy range, and the reported association with a highly reddened OB supergiant at ~10 kpc, we conclude that IGR J17503-2636 is most likely a relatively faint new member of the supergiant fast X-ray transients. Spectral analysis of the NuSTAR data revealed a broad feature in addition to the typical power-law with exponential roll-over at high energy. This can be modeled either in emission or as a cyclotron scattering feature in absorption. If confirmed by future observations, this feature would indicate that IGR J17503-2636 hosts a strongly magnetized neutron star with B~2e12 G.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا