Do you want to publish a course? Click here

Complex Variable Methods for 3D Applied Mathematics: 3D Twistors and the biharmonic equation

88   0   0.0 ( 0 )
 Added by William Shaw
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In applied mathematics generally and fluid dynamics in particular, the role of complex variable methods is normally confined to two-dimensional motion and the association of points with complex numbers via the assignment w = x+i y. In this framework 2D potential flow can be treated through the use of holomorphic functions and biharmonic flow through a simple, but superficially non-holomorphic extension. This paper explains how to elevate the use of complex methods to three dimensions, using Penroses theory of twistors as adapted to intrinsically 3D and non-relativistic problems by Hitchin. We first summarize the equations of 3D steady viscous fluid flow in their basic geometric form. We then explain the theory of twistors for 3D, resulting in complex holomorphic representations of solutions to harmonic and biharmonic problems. It is shown how this intrinsically holomorphic 3D approach reduces naturally to the well-known 2D situations when there is translational or rotational symmetry, and an example is given. We also show how the case of small but finite Reynolds number can be integrated by complex variable techniques in two dimensions, albeit under strong assumptions.



rate research

Read More

The biharmonic equation, as well as its nonlinear and inhomogeneous generalizations, plays an important role in engineering and physics. In particular the focusing biharmonic nonlinear Schr{o}dinger equation, and its standing wave solutions, have been intensively investigated. In the present paper we consider the applications of the Laplace-Adomian and Adomian Decomposition Methods for obtaining semi-analytical solutions of the generalized biharmonic equations of the type $Delta ^{2}y+alpha Delta y+omega y+b^{2}+gleft( yright) =f$, where $alpha $, $omega $ and $b$ are constants, and $g$ and $f$ are arbitrary functions of $y$ and the independent variable, respectively. After introducing the general algorithm for the solution of the biharmonic equation, as an application we consider the solutions of the one-dimensional and radially symmetric biharmonic standing wave equation $Delta ^{2}R+R-R^{2sigma +1}=0$, with $sigma = {rm constant}$. The one-dimensional case is analyzed by using both the Laplace-Adomian and the Adomian Decomposition Methods, respectively, and the truncated series solutions are compared with the exact numerical solution. The power series solution of the radial biharmonic standing wave equation is also obtained, and compared with the numerical solution.
90 - V. Grassi , R.A. Leo , G. Soliani 2001
The Navier-Stokes-Fourier model for a 3D thermoconducting viscous fluid, where the evolution equation for the temperature T contains a term proportional to the rate of energy dissipation, is investigated analitically at the light of the rotational invariance property. Two cases are considered: the Couette flow and a flow with a radial velocity between two rotating impermeable and porous coaxial cylinders, respectively. In both cases, we show the existence of a maximum value of T, T_max, when the difference of temperature Delta T=T_2-T_1 on the surfaces of the cylinders is assigned. The role of T_max is discussed in the context of different physical situations.
264 - Jaykov Foukzon 2015
Analytical non-perturbative study of the three-dimensional nonlinear stochastic partial differential equation with additive thermal noise, analogous to that proposed by V.N. Nikolaevskii [1]-[5]to describe longitudinal seismic waves, is presented. The equation has a threshold of short-wave instability and symmetry, providing long wave dynamics. New mechanism of quantum chaos generating in nonlinear dynamical systems with infinite number of degrees of freedom is proposed. The hypothesis is said, that physical turbulence could be identified with quantum chaos of considered type. It is shown that the additive thermal noise destabilizes dramatically the ground state of the Nikolaevskii system thus causing it to make a direct transition from a spatially uniform to a turbulent state.
A single incompressible, inviscid, irrotational fluid medium bounded by a free surface and varying bottom is considered. The Hamiltonian of the system is expressed in terms of the so-called Dirichlet-Neumann operators. The equations for the surface waves are presented in Hamiltonian form. Specific scaling of the variables is selected which leads to approximations of Boussinesq and KdV types taking into account the effect of the slowly varying bottom. The arising KdV equation with variable coefficients is studied numerically when the initial condition is in the form of the one soliton solution for the initial depth.
338 - S.B. Kozitskiy 2009
Three dimensional roll-type double-diffusive convection in a horizontally infinite layer of an uncompressible liquid is considered in the neighborhood of Hopf bifurcation points. A system of amplitude equations for the variations of convective rolls amplitude is derived by multiple-scaled method. An attention is paid to an interaction of convection and horizontal vortex. Different cases of the derived equations are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا