Do you want to publish a course? Click here

The Herschel view of star formation in the Rosette molecular cloud under the influence of NGC 2244

146   0   0.0 ( 0 )
 Added by Nicola Schneider
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Rosette molecular cloud is promoted as the archetype of a triggered star-formation site. This is mainly due to its morphology, because the central OB cluster NGC 2244 has blown a circular-shaped cavity into the cloud and the expanding HII-region now interacts with the cloud. Studying the spatial distribution of the different evolutionary states of all star-forming sites in Rosette and investigating possible gradients of the dust temperature will help to test the triggered star-formation scenario in Rosette. We use continuum data obtained with the PACS (70 and 160 micron) and SPIRE instruments (250, 350, 500 micron) of the Herschel telescope during the Science Demonstration Phase of HOBYS. Three-color images of Rosette impressively show how the molecular gas is heated by the radiative impact of the NGC 2244 cluster. A clear negative temperature gradient and a positive density gradient (running from the HII-region/molecular cloud interface into the cloud) are detected. Studying the spatial distribution of the most massive dense cores (size scale 0.05 to 0.3 pc), we find an age-sequence (from more evolved to younger) with increasing distance to the cluster NGC 2244. No clear gradient is found for the clump (size-scale up to 1 pc) distribution. The existence of temperature and density gradients and the observed age-sequence imply that star formation in Rosette may indeed be influenced by the radiative impact of the central NGC 2244 cluster. A more complete overview of the prestellar and protostellar population in Rosette is required to obtain a firmer result.



rate research

Read More

Using Spitzer Space Telescope and Chandra X-ray Observatory data, we identify YSOs in the Rosette Molecular Cloud (RMC). By being able to select cluster members and classify them into YSO types, we are able to track the progression of star formation locally within the cluster environments and globally within the cloud. We employ nearest neighbor method (NNM) analysis to explore the density structure of the clusters and YSO ratio mapping to study age progressions in the cloud. We find a relationship between the YSO ratios and extinction which suggests star formation occurs preferentially in the densest parts of the cloud and that the column density of gas rapidly decreases as the region evolves. This suggests rapid removal of gas may account for the low star formation efficiencies observed in molecular clouds. We find that the overall age spread across the RMC is small. Our analysis suggests that star formation started throughout the complex around the same time. Age gradients in the cloud appear to be localized and any effect the HII region has on the star formation history is secondary to that of the primordial collapse of the cloud.
The Herschel OB young stellar objects survey (HOBYS) has observed the Rosette molecular cloud, providing an unprecedented view of its star formation activity. These new far-infrared data reveal a population of compact young stellar objects whose physical properties we aim to characterise. We compiled a sample of protostars and their spectral energy distributions that covers the near-infrared to submillimetre wavelength range. These were used to constrain key properties in the protostellar evolution, bolometric luminosity, and envelope mass and to build an evolutionary diagram. Several clusters are distinguished including the cloud centre, the embedded clusters in the vicinity of luminous infrared sources, and the interaction region. The analysed protostellar population in Rosette ranges from 0.1 to about 15 Msun with luminosities between 1 and 150 Lsun, which extends the evolutionary diagram from low-mass protostars into the high-mass regime. Some sources lack counterparts at near- to mid-infrared wavelengths, indicating extreme youth. The central cluster and the Phelps & Lada 7 cluster appear less evolved than the remainder of the analysed protostellar population. For the central cluster, we find indications that about 25% of the protostars classified as Class I from near- to mid-infrared data are actually candidate Class 0 objects. As a showcase for protostellar evolution, we analysed four protostars of low- to intermediate-mass in a single dense core, and they represent different evolutionary stages from Class 0 to Class I. Their mid- to far-infrared spectral slopes flatten towards the Class I stage, and the 160 to 70um flux ratio is greatest for the presumed Class 0 source. This shows that the Herschel observations characterise the earliest stages of protostellar evolution in detail.
We present a preliminary analysis of the small-scale structure found in new 70-520 micron continuum maps of the Rosette molecular cloud (RMC), obtained with the SPIRE and PACS instruments of the Herschel Space Observatory. We find 473 clumps within the RMC using a new structure identification algorithm, with sizes up to ~1.0 pc in diameter. A comparison with recent Spitzer maps reveals that 371 clumps are starless (without an associated young stellar object), while 102 are protostellar. Using the respective values of dust temperature, we determine the clumps have masses (M_C) over the range -0.75 <= log (M_C/M_sun) <= 2.50. Linear fits to the high-mass tails of the resulting clump mass spectra (CMS) have slopes that are consistent with those found for high-mass clumps identified in CO emission by other groups.
As part of the Herschel guaranteed time key program HOBYS, we present the photometric survey of the star forming region Vela-C, one of the nearest sites of low-to-high-mass star formation in the Galactic plane. Vela-C has been observed with PACS and SPIRE in parallel mode between 70 um and 500 um over an area of about 3 square degrees. A photometric catalogue has been extracted from the detections in each band, using a threshold of 5 sigma over the local background. Out of this catalogue we have selected a robust sub-sample of 268 sources, of which 75% are cloud clumps and 25% are cores. Their Spectral Energy Distributions (SEDs) have been fitted with a modified black body function. We classify 48 sources as protostellar and 218 as starless. For two further sources, we do not provide a secure classification, but suggest they are Class 0 protostars. From SED fitting we have derived key physical parameters. Protostellar sources are in general warmer and more compact than starless sources. Both these evidences can be ascribed to the presence of an internal source(s) of moderate heating, which also causes a temperature gradient and hence a more peaked intensity distribution. Moreover, the reduced dimensions of protostellar sources may indicate that they will not fragment further. A virial analysis of the starless sources gives an upper limit of 90% for the sources gravitationally bound and therefore prestellar. We fit a power law N(logM) prop M^-1.1 to the linear portion of the mass distribution of prestellar sources. This is in between that typical of CO clumps and those of cores in nearby star-forming regions. We interpret this as a result of the inhomogeneity of our sample, which is composed of comparable fractions of clumps and cores.
135 - N. Schneider 2012
For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. The Rosette molecular cloud, irradiated by the NGC2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peaked PDF we interprete as caused by shock compression. The deviations of the PDF from the log-normal shape typically associated with low- and high-mass star-forming regions at Av~3-4m and 8-10m, respectively, are found here within the very same cloud. This shows that there is no fundamental difference in the density structure of low- and high-mass star-forming regions. We conclude that star-formation in Rosette - and probably in high-mass star-forming clouds in general - is not globally triggered by the impact of UV-radiation. Moreover, star formation takes place in filaments that arose from the primordial turbulent structure built up during the formation of the cloud. Clusters form at filament mergers, but star formation can be locally induced in the direct interaction zone between an expanding HII--region and the molecular cloud.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا