Do you want to publish a course? Click here

The {beta} Pictoris disk imaged by Herschel PACS and SPIRE

213   0   0.0 ( 0 )
 Added by Bart Vandenbussche
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We obtained Herschel PACS and SPIRE images of the thermal emission of the debris disk around the A5V star {beta} Pic. The disk is well resolved in the PACS filters at 70, 100, and 160 {mu}m. The surface brightness profiles between 70 and 160 {mu}m show no significant asymmetries along the disk, and are compatible with 90% of the emission between 70 and 160 {mu}m originating in a region closer than 200 AU to the star. Although only marginally resolving the debris disk, the maps obtained in the SPIRE 250 - 500 {mu}m filters provide full-disk photometry, completing the SED over a few octaves in wavelength that had been previously inaccessible. The small far-infrared spectral index ({beta} = 0.34) indicates that the grain size distribution in the inner disk (<200AU) is inconsistent with a local collisional equilibrium. The size distribution is either modified by non-equilibrium effects, or exhibits a wavy pattern, caused by an under-abundance of impactors which have been removed by radiation pressure.



rate research

Read More

The young star beta Pictoris is well known for its dusty debris disk, produced through the grinding down by collisions of planetesimals, kilometre-sized bodies in orbit around the star. In addition to dust, small amounts of gas are also known to orbit the star, likely the result from vaporisation of violently colliding dust grains. The disk is seen edge on and from previous absorption spectroscopy we know that the gas is very rich in carbon relative to other elements. The oxygen content has been more difficult to assess, however, with early estimates finding very little oxygen in the gas at a C/O ratio 20x higher than the cosmic value. A C/O ratio that high is difficult to explain and would have far-reaching consequences for planet formation. Here we report on observations by the far-infrared space telescope Herschel, using PACS, of emission lines from ionised carbon and neutral oxygen. The detected emission from C+ is consistent with that previously reported being observed by the HIFI instrument on Herschel, while the emission from O is hard to explain without assuming a higher-density region in the disk, perhaps in the shape of a clump or a dense torus, required to sufficiently excite the O atoms. A possible scenario is that the C/O gas is produced by the same process responsible for the CO clump recently observed by ALMA in the disk, and that the re-distribution of the gas takes longer than previously assumed. A more detailed estimate of the C/O ratio and the mass of O will have to await better constraints on the C/O gas spatial distribution.
Herschel PACS and SPIRE images have been obtained over a 30x30 area around the well-known carbon star CW Leo (IRC +10 216). An extended structure is found in an incomplete arc of ~22 diameter, which is cospatial with the termination shock due to interaction with the interstellar medium (ISM) as defined by Sahai & Chronopoulos from ultraviolet GALEX images. Fluxes are derived in the 70, 160, 250, 350, and 550 um bands in the region where the interaction with the ISM takes place, and this can be fitted with a modified black body with a temperature of 25+-3 K. Using the published proper motion and radial velocity for the star, we derive a heliocentric space motion of 25.1 km/s. Using the PACS and SPIRE data and the analytical formula of the bow shock structure, we infer a de-projected standoff distance of the bow shock of R0 = (8.0+-0.3)x10^17 cm. We also derive a relative velocity of the star with respect to the ISM of (106.6+-8.7)/sqrt(n_ISM) km/s, where n_ISM is the number density of the local ISM.
In this paper we will discuss the images of Planetary Nebulae that have recently been obtained with PACS and SPIRE on board the Herschel satellite. This comprises results for NGC 650 (the little Dumbbell nebula), NGC 6853 (the Dumbbell nebula), and NGC 7293 (the Helix nebula).
Context: The dusty debris disk around the $sim$20 Myr old main-sequence A-star {beta} Pictoris is known to contain gas. Evidence points towards a secondary origin of the gas as opposed to being a direct remnant form the initial protoplanetary disk, although the dominant gas production mechanism is so far not identified. The origin of the observed overabundance of C and O compared to solar abundances of metallic elements, e.g. Na and Fe, is also unclear. Aims: Our goal is to constrain the spatial distribution of C in the disk, and thereby the gas origin and its abundance pattern. Methods: We used the HIFI instrument onboard Herschel to observe and spectrally resolve CII emission at 158 $mu$m from the {beta} Pic debris disk. Assuming Keplerian rotation, we use the spectrally resolved line profile to constrain the spatial distribution of the gas. Results: We show that most of the gas is located around $sim$100 AU or beyond. We estimate a total C gas mass of $1.3times10^{-2}$ M$_oplus$. The data suggest that more gas is located on the southwest side of the disk than on the northeast side. The data are consistent with the hypothesis of a well-mixed gas (constant C/Fe ratio throughout the disk). Assuming instead a spatial profile expected from a simplified accretion disk model, we found it to give a significantly worse fit to the observations. Conclusions: Since the bulk of the gas is found outside 30 AU, we argue that the cometary objects known as falling evaporating bodies are unlikely to be the dominant source of gas; production from grain-grain collisions or photodesorption seems more likely. The incompatibility of the observations with a simplified accretion disk model could favour a preferential depletion explanation for the overabundance of C and O. More stringent constraints on the spatial distribution will be available from ALMA observations of CI at 609 $mu$m.
Context. Debris discs are thought to be formed through the collisional grinding of planetesimals, and can be considered as the outcome of planet formation. Understanding the properties of gas and dust in debris discs can help us to comprehend the architecture of extrasolar planetary systems. Herschel Space Observatory far-infrared (IR) photometry and spectroscopy have provided a valuable dataset for the study of debris discs gas and dust composition. This paper is part of a series of papers devoted to the study of Herschel PACS observations of young stellar associations. Aims. This work aims at studying the properties of discs in the Beta Pictoris Moving Group (BPMG) through far-IR PACS observations of dust and gas. Methods. We obtained Herschel-PACS far-IR photometric observations at 70, 100 and 160 microns of 19 BPMG members, together with spectroscopic observations of four of them. Spectroscopic observations were centred at 63.18 microns and 157 microns, aiming to detect [OI] and [CII] emission. We incorporated the new far-IR observations in the SED of BPMG members and fitted modified blackbody models to better characterise the dust content. Results. We have detected far-IR excess emission toward nine BPMG members, including the first detection of an IR excess toward HD 29391.The star HD 172555, shows [OI] emission, while HD 181296, shows [CII] emission, expanding the short list of debris discs with a gas detection. No debris disc in BPMG is detected in both [OI] and [CII]. The discs show dust temperatures in the range 55 to 264 K, with low dust masses (6.6*10^{-5} MEarth to 0.2 MEarth) and radii from blackbody models in the range 3 to 82 AU. All the objects with a gas detection are early spectral type stars with a hot dust component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا