Do you want to publish a course? Click here

Gas in Protoplanetary Discs (GASPS) 1. First results

128   0   0.0 ( 0 )
 Added by Geoffrey Mathews
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context - Circumstellar discs are ubiquitous around young stars, but rapidly dissipate their gas and dust on timescales of a few Myr. The Herschel space observatory allows for the study of the warm disc atmosphere, using far-infrared spectroscopy to measure gas content and excitation conditions, and far-IR photometry to constrain the dust distribution. Aims - We aim to detect and characterize the gas content of circumstellar discs in four targets as part of the Herschel science demonstration phase. Methods - We carried out sensitive medium resolution spectroscopy and high sensitivity photometry at lambda ~60-190 micron using the Photodetector Array Camera and Spectrometer instrument on the Herschel space observatory. Results - We detect [OI] 63 micron emission from the young stars HD 169142, TW Hydrae, and RECX 15, but not HD 181327. No other lines, including [CII] 158 and [OI] 145, are significantly detected. All four stars are detected in photometry at 70 and 160 micron. Extensive models are presented in associated papers.



rate research

Read More

264 - C. Pinte , P. Woitke , F. Menard 2010
The Herschel GASPS Key Program is a survey of the gas phase of protoplanetary discs, targeting 240 objects which cover a large range of ages, spectral types, and disc properties. To interpret this large quantity of data and initiate self-consistent analyses of the gas and dust properties of protoplanetary discs, we have combined the capabilities of the radiative transfer code MCFOST with the gas thermal balance and chemistry code ProDiMo to compute a grid of 300 000 disc models (DENT). We present a comparison of the first Herschel/GASPS line and continuum data with the predictions from the DENT grid of models. Our objective is to test some of the main trends already identified in the DENT grid, as well as to define better empirical diagnostics to estimate the total gas mass of protoplanetary discs. Photospheric UV radiation appears to be the dominant gas-heating mechanism for Herbig stars, whereas UV excess and/or X-rays emission dominates for T Tauri stars. The DENT grid reveals the complexity in the analysis of far-IR lines and the difficulty to invert these observations into physical quantities. The combination of Herschel line observations with continuum data and/or with rotational lines in the (sub-)millimetre regime, in particular CO lines, is required for a detailed characterisation of the physical and chemical properties of circumstellar discs.
We present 3D smoothed particle hydrodynamics simulations of protoplanetary discs undergoing a flyby by a stellar perturber on a parabolic orbit lying in a plane inclined relative to the disc mid-plane. We model the disc as a mixture of gas and dust, with grains ranging from 1 {mu}m to 10 cm in size. Exploring different orbital inclinations, periastron distances and mass ratios, we investigate the disc dynamical response during and after the flyby. We find that flybys induce evolving spiral structure in both gas and dust which can persist for thousands of years after periastron. Gas and dust structures induced by the flyby differ because of drag-induced effects on the dust grains. Variations in the accretion rate by up to an order of magnitude occur over a time-scale of order 10 years or less, inducing FU Orionis-like outbursts. The remnant discs are truncated and warped. The dust disc is left more compact than the gas disc, both because of disc truncation and accelerated radial drift of grains induced by the flyby.
114 - W.R.F. Dent , W.F. Thi , I. Kamp 2013
GASPS is a far-infrared line and continuum survey of protoplanetary and young debris disks using PACS on the Herschel Space Observatory. The survey includes [OI] at 63 microns, as well as 70, 100 and 160um continuum, with the brightest objects also studied in [OI]145um, [CII]157um, H2O and CO. Targets included T Tauri stars and debris disks in 7 nearby young associations, and a sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide disk sample, systemically comparing the results with models. In this paper we review the main aims, target selection and observing strategy. We show initial results, including line identifications, sources detected, and a first statistical study. [OI]63um was the brightest line in most objects, by a factor of ~10. Detection rates were 49%, including 100% of HAeBe stars and 43% of T Tauri stars. Comparison with published dust masses show a dust threshold for [OI]63um detection of ~1e-5 M_solar. Normalising to 140pc distance, 32% with mass 1e-6 - 1e-5 M_solar, and a small number with lower mass were also detected. This is consistent with moderate UV excess and disk flaring. In most cases, continuum and line emission is spatially and spectrally unresolved, suggesting disk emission. ~10 objects were resolved, likely from outflows. Detection rates in [OI]145um, [CII]157um and CO J=18-17 were 20-40%, but [CII] was not correlated with disk mass, suggesting it arises instead from a compact envelope. [OI] detection rates in T Tauri associations of ages 0.3-4Myr were ~50%. ~2 stars were detectable in associations of 5-20Myr, with no detections in associations of age >20Myr. Comparing with the total number of young stars, and assuming a ISM-like gas/dust ratio, this indicates that ~18% of stars retain a gas-rich disk of total mass >1M_Jupiter for 1-4Myr, 1-7% keep such disks for 5-10Myr, and none remain beyond 10-20Myr.
218 - Zs. Regaly , E. Vorobyov 2017
Horseshoe-shaped brightness asymmetries of several transitional discs are thought to be caused by large-scale vortices. Anticyclonic vortices are efficiently collect dust particles, therefore they can play a major role in planet formation. Former studies suggest that the disc self-gravity weakens vortices formed at the edge of the gap opened by a massive planet in discs whose masses are in the range of 0.01<=M_disc/M_*<=0.1. Here we present an investigation on the long-term evolution of the large-scale vortices formed at the viscosity transition of the discs dead zone outer edge by means of two-dimensional hydrodynamic simulations taking disc self-gravity into account. We perform a numerical study of low mass, 0.001<=M_disc/M_*<=0.01, discs, for which cases disc self-gravity was previously neglected. The large-scale vortices are found to be stretched due to disc self-gravity even for low-mass discs with M_disc/M_*>=0.005 where initially the Toomre Q-parameter was <=50 at the vortex distance. As a result of stretching, the vortex aspect ratio increases and a weaker azimuthal density contrast develops. The strength of the vortex stretching is proportional to the disc mass. The vortex stretching can be explained by a combined action of a non-vanishing gravitational torque caused by the vortex, and the Keplerian shear of the disc. Self-gravitating vortices are subject to significantly faster decay than non-self-gravitating ones. We found that vortices developed at sharp viscosity transitions of self-gravitating discs can be described by a GNG model as long as the disc viscosity is low, i.e. alpha_dz<=10^-5.
We observed a sample of 20 representative Herbig Ae/Be stars and five A-type debris discs with PACS onboard of Herschel. The observations were done in spectroscopic mode, and cover far-IR lines of [OI], [CII], CO, CH+, H2O and OH. We have a [OI]63 micron detection rate of 100% for the Herbig Ae/Be and 0% for the debris discs. [OI]145 micron is only detected in 25%, CO J=18-17 in 45% (and less for higher J transitions) of the Herbig Ae/Be stars and for [CII] 157 micron, we often found spatially variable background contamination. We show the first detection of water in a Herbig Ae disc, HD 163296, which has a settled disc. Hydroxyl is detected as well in this disc. CH+, first seen in HD 100546, is now detected for the second time in a Herbig Ae star, HD 97048. We report fluxes for each line and use the observations as line diagnostics of the gas properties. Furthermore, we look for correlations between the strength of the emission lines and stellar or disc parameters, such as stellar luminosity, UV and X-ray flux, accretion rate, PAH band strength, and flaring. We find that the stellar UV flux is the dominant excitation mechanism of [OI]63 micron, with the highest line fluxes found in those objects with a large amount of flaring and greatest PAH strength. Neither the amount of accretion nor the X-ray luminosity has an influence on the line strength. We find correlations between the line flux of [OI]63 micron and [OI]145 micron, CO J = 18-17 and [OI]6300 AA, and between the continuum flux at 63 micron and at 1.3 mm, while we find weak correlations between the line flux of [OI]63 micron and the PAH luminosity, the line flux of CO J = 3-2, the continuum flux at 63 micron, the stellar effective temperature and the Brgamma luminosity. (Abbreviated version)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا