Do you want to publish a course? Click here

Semimartingale attractors for Allen-Cahn SPDEs driven by space-time white noise I: Existence and finite dimensional asymptotic behavior

94   0   0.0 ( 0 )
 Added by Hassan Allouba
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We delve deeper into the study of semimartingale attractors that we recently introduced in Allouba and Langa cite{AL0}. In this article we focus on second order SPDEs of the Allen-Cahn type. After proving existence, uniqueness, and detailed regularity results for our SPDEs and a corresponding random PDE of Allen-Cahn type, we prove the existence of semimartingale global attractors for these equations. We also give some results on the finite dimensional asymptotic behavior of the solutions. In particular, we show the finite fractal dimension of this random attractor and give a result on determining modes, both in the forward and the pullback sense.



rate research

Read More

We prove existence and uniqueness of strong solutions for a class of semilinear stochastic evolution equations driven by general Hilbert space-valued semimartingales, with drift equal to the sum of a linear maximal monotone operator in variational form and of the superposition operator associated to a random time-dependent monotone function defined on the whole real line. Such a function is only assumed to satisfy a very mild symmetry-like condition, but its rate of growth towards infinity can be arbitrary. Moreover, the noise is of multiplicative type and can be path-dependent. The solution is obtained via a priori estimates on solutions to regularized equations, interpreted both as stochastic equations as well as deterministic equations with random coefficients, and ensuing compactness properties. A key role is played by an infinite-dimensional Doob-type inequality due to Metivier and Pellaumail.
We consider a quantum field model with exponential interactions on the two-dimensional torus, which is called the $exp (Phi)_{2}$-quantum field model or H{o}egh-Krohns model. In the present paper, we study the stochastic quantization of this model by singular stochastic partial differential equations, which is recently developed. By the method, we construct a unique time-global solution and the invariant probability measure of the corresponding stochastic quantization equation, and identify with an infinite-dimensional diffusion process, which has been constructed by the Dirichlet form approach.
In this paper we investigate the long time behavior of solutions to fractional in time evolution equations which appear as results of random time changes in Markov processes. We consider inverse subordinators as random times and use the subordination principle for the solutions to forward Kolmogorov equations. The class of subordinators for which asymptotic analysis may be realized is described.
The present paper is a continuation of our previous work on the stochastic quantization of the $exp(Phi)_2$-quantum field model on the two-dimensional torus. Making use of key properties of Gaussian multiplicative chaos and refining the method for singular SPDEs introduced in the previous work, we construct a unique time-global solution to the corresponding parabolic stochastic quantization equation in the full $L^{1}$-regime $vertalphavert<sqrt{8pi}$ of the charge parameter $alpha$. We also identify the solution with an infinite-dimensional diffusion process constructed by the Dirichlet form approach.
171 - Mattia Turra 2018
We study existence and uniqueness of distributional solutions to the stochastic partial differential equation $dX - ( u Delta X + Delta psi (X) ) dt = sum_{i=1}^N langle b_i, abla X rangle circ dbeta_i$ in $]0,T[ times mathcal{O}$, with $X(0) = x(xi)$ in $mathcal{O}$ and $X = 0$ on $]0,T[ times partial mathcal{O}$. Moreover, we prove extinction in finite time of the solutions in the special case of fast diffusion model and of self-organized criticality model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا