Automated period detection from variable stars time series database


Abstract in English

The exact period determination of a multi-periodic variable star based on its luminosity time series data is believed a task requiring skill and experience. Thus the majority of available time series analysis techniques require human intervention to some extent. The present work is dedicated to establish an automated method of period (or frequency) determination from the time series database of variable stars. Relying on the SigSpec method (Reegen 2007), the technique established here employs a statistically unbiased treatment of frequency-domain noise and avoids spurious (i. e. noise induced) and alias peaks to the highest possible extent. Several add-ons were incorporated to tailor SigSpec to our requirements. We present tests on 386 stars taken from ASAS2 project database. From the output file produced by SigSpec, the frequency with maximum spectral significance is chosen as the genuine frequency. Out of 386 variable stars available in the ASAS2 database, our results contain 243 periods recovered exactly and also 88 half periods, 42 different periods etc. SigSpec has the potential to be effectively used for fully automated period detection from variable stars time series database. The exact detection of periods helps us to identify the type of variability and classify the variable stars, which provides a crucial information on the physical processes effective in stellar atmospheres.

Download