Do you want to publish a course? Click here

Co-evolution of atmospheres, life, and climate

211   0   0.0 ( 0 )
 Added by John Lee Grenfell
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

After Earths origin, our host star, the Sun, was shining 20 to 25 percent less brightly than today. Without greenhouse-like conditions to warm the atmosphere, our early planet would have been an ice ball and life may never have evolved. But life did evolve, which indicates that greenhouse gases must have been present on early Earth to warm the planet. Evidence from the geologic record indicates an abundance of the greenhouse gas CO2. CH4 was probably present as well, and in this regard methanogenic bacteria, which belong to a diverse group of anaerobic procaryotes that ferment CO 2 plus H2 to CH4, may have contributed to modification of the early atmosphere. Molecular oxygen was not present, as is indicated by the study of rocks from that era, which contain iron carbonate rather than iron oxide. Multicellular organisms originated as cells within colonies that became increasingly specialized. The development of photosynthesis allowed the Suns energy to be harvested directly by life forms. The resultant oxygen accumulated in the atmosphere and formed the ozone layer in the upper atmosphere. Aided by the absorption of harmful UV radiation in the ozone layer, life colonized Earths surface. Our own planet is a very good example of how life forms modified the atmosphere over the planets life time. We show that these facts have to be taken into account when we discover and characterize atmospheres of Earth-like exoplanets. If life has originated and evolved on a planet, then it should be expected that a strong co-evolution occurred between life and the atmosphere, the result of which is the planets climate.



rate research

Read More

There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion-neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon and oxygen chemistry accurately within a temperature range between 100 K and 30000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD209458b, Jupiter and the present-day Earth using a simple 1D photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting (1993) for CO2, H2, CO and O2, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.
150 - Laura Silva 2016
In an effort to derive temperature based criteria of habitability for multicellular life, we investigated the thermal limits of terrestrial poikilotherms, i.e. organisms whose body temperature and the functioning of all vital processes is directly affected by the ambient temperature. Multicellular poikilotherms are the most common and evolutionarily ancient form of complex life on earth. The thermal limits for their active metabolism and reproduction are bracketed by the temperature interval 0C<T<50C. The same interval applies to the photosynthetic production of oxygen, an essential ingredient of complex life, and for the generation of atmospheric biosignatures. Analysis of the main mechanisms responsible for the thermal thresholds of terrestrial life suggests that the same mechanisms would apply to other forms of chemical life. We propose a habitability index for complex life, h050, representing the mean orbital fraction of planetary surface that satisfies the temperature limits 0C<T<50C. With the aid of a climate model tailored for the calculation of the surface temperature of Earth-like planets, we calculated h050 as a function of planet insolation S, and atmospheric columnar mass Natm, for a few earth-like atmospheric compositions. By displaying h050 as a function of S and Natm, we built up an atmospheric mass habitable zone (AMHZ) for complex life. At variance with the classic habitable zone, the inner edge of the complex life HZ is not affected by the uncertainties inherent to the calculation of the runaway greenhouse limit. The complex life HZ is significantly narrower than the HZ of dry planets. Our calculations illustrate how changes in ambient conditions dependent on S and Natm, such as temperature excursions and surface dose of secondary particles of cosmic rays, may influence the type of life potentially present at different epochs of planetary evolution inside the AMHZ.
The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for exoplanets. We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like exoplanets by comparing our 1D model results to those of 3D climate studies in the literature. We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. These parameters depend on climate feedbacks that are not treated self-consistently in most 1D models. We compared the results to those of 3D model calculations in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When treating the surface albedo and the relative humidity profile as parameters in 1D model studies and using the habitability constraints found by recent 3D modeling studies, the same conclusions about the potential habitability of a planet can be drawn as from 3D model calculations.
The origin of life on Earth seems to demand a highly reduced early atmosphere, rich in CH4, H2, and NH3, but geological evidence suggests that Earths mantle has always been relatively oxidized and its emissions dominated by CO2 H2O, and N2. The paradox can be resolved by exploiting the reducing power inherent in the late veneer, i.e., material accreted by Earth after the Moon-forming impact. Isotopic evidence indicates that the late veneer consisted of extremely dry, highly reduced inner solar system materials, suggesting that Earths oceans were already present when the late veneer came. The major primary product of reaction between the late veneers iron and Earths water was H2. Ocean vaporizing impacts generate high pressures and long cooling times that favor CH4 and NH3. Impacts too small to vaporize the oceans are much less productive of CH4 and NH3, unless (i) catalysts were available to speed their formation, or (ii) additional reducing power was extracted from pre-existing crustal or mantle materials. The transient H2-CH4 atmospheres evolve photochemically to generate nitrogenated hydrocarbons at rates determined by solar radiation and hydrogen escape, on timescales ranging up to tens of millions of years and with cumulative organic production ranging up to half a kilometer. Roughly one ocean of hydrogen escapes. The atmosphere after the methanes gone is typically H2 and CO rich, with eventual oxidation to CO2 rate-limited by water photolysis and hydrogen escape.
120 - Bradford J. Foley 2019
Coupled models of mantle thermal evolution, volcanism, outgassing, weathering, and climate evolution for Earth-like (in terms of size and composition) stagnant lid planets are used to assess their prospects for habitability. The results indicate that planetary CO$_2$ budgets ranging from $approx 3$ orders of magnitude lower than Earths to $approx 1$ order of magnitude larger, and radiogenic heating budgets as large or larger than Earths, allow for habitable climates lasting 1-5 Gyrs. The ability of stagnant lid planets to recover from potential snowball states is also explored; recovery is found to depend on whether atmosphere-ocean chemical exchange is possible. For a hard snowball with no exchange, recovery is unlikely, as most CO$_2$ outgassing takes place via metamorphic decarbonation of the crust, which occurs below the ice layer. However, for a soft snowball where there is exchange between atmosphere and ocean, planets can readily recover. For both hard and soft snowball states, there is a minimum CO$_2$ budget needed for recovery; below this limit any snowball state would be permanent. Thus there is the possibility for hysteresis in stagnant lid planet climate evolution, where planets with low CO$_2$ budgets that start off in a snowball climate will be permanently stuck in this state, while otherwise identical planets that start with a temperate climate will be capable of maintaining this climate for 1 Gyrs or more. Finally, the model results have important implications for future exoplanet missions, as they can guide observations to planets most likely to possess habitable climates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا