Spontaneous breaking of rotational symmetry and preferential orientation of stripe phases in the quantum Hall regime has attracted considerable experimental and theoretical effort over the last decade. We demonstrate experimentally and theoretically that the direction of high and low resistance of the two-dimensional (2D) hole gas in the quantum Hall regime can be controlled by an external strain. Depending on the sign of the in-plane shear strain, the Hartree-Fock energy of holes or electrons is minimized when the charge density wave (CDW) is oriented along [110] or [1-10] directions. We suggest that shear strains due to internal electric fields in the growth direction are responsible for the observed orientation of CDW in pristine electron and hole samples.
Quantum Hall stripe phases near half-integer filling factors $ u ge 9/2$ were predicted by Hartree-Fock (HF) theory and confirmed by discoveries of giant resistance anisotropies in high-mobility two-dimensional electron gases. A theory of such anisotropy was proposed by MacDonald and Fisher, although they used parameters whose dependencies on the filling factor, electron density, and mobility remained unspecified. Here, we fill this void by calculating the hard-to-easy resistivity ratio as a function of these three variables. Quantitative comparison with experiment yields very good agreement which we view as evidence for the plain vanilla smectic stripe HF phases.
In a manganite film without quenched disorder, we show texturing in the form of insulating and metallic stripes above and below Curie temperature (Tc), respectively, by high resolution scanning tunneling microscopy/spectroscopy (STM/STS). The formation of these stripes involves competing orbital and charge orders, and are an outcome of overlapping electron wave-functions mediated by long-range lattice strain. Contrary to popular perception, electronically homogeneous stripe phase underlines the efficacy of the lattice strain in bringing about charge density modulation and in impeding the cross-talk between the order parameters, which otherwise evolves inhomogeneously in the form of orbitally-ordered insulating and orbitally disordered metallic phases.
We compute the effect of Landau-level-mixing on the effective two-body and three-body pseudopotentials for electrons in the lowest and second Landau levels. We find that the resulting effective three-body interaction is attractive in the lowest relative angular momentum channel. The renormalization of the two-body pseudopotentials also shows interesting structure. We comment on the implications for the $ u=5/2$ fractional quantum Hall state.
Several non-cuprates layered transition-metal oxides exhibit clear evidence for stripe ordering of charges and magnetic moments. Therefore, stripe order should be considered as the typical consequence of doping a Mott insulator, but only in cuprates stripe order or fluctuating stripes coexist with metallic properties. A linear relationship between the charge concentration and the incommensurate structural and magnetic modulations can be considered as the finger print of stripe ordering with localized degrees of freedom. In nickelates and in cobaltates with K2NiF4 structure, doping suppresses the nearest-neighbor antiferromagnetism and induces stripe order. The higher amount of doping needed to induce stripe phases in these non-cuprates series can be attributed to reduced charge mobility. Also manganites exhibit clear evidence for stripe phases with further enhanced complexity, because orbital degrees of freedom are involved. Orbital ordering is the key element of stripe order in manganites since it is associated with the strongest structural distortion and with the perfectly fulfilled relation between doping and incommensurability. Magnetic excitations in insulating stripe phases exhibit strong similarity with those in the cuprates, but only for sufficiently short magnetic correlation lengths reflecting well-defined magnetic stripes that are only loosely coupled.
We study the effect of a uniform pseudomagnetic field, induced by a strain in a monolayer and double layer of gapped graphene, acting on excitons. For our analysis it is crucial that the pseudomagnetic field acts on the charges of the constituent particles of the excitons, i.e., the electrons and holes, the same way in contrast to a magnetic field. Moreover, using a circularly polarized laser field, the electrons and the holes can be excited only in one valley of the honeycomb lattice of gapped graphene. This breaks the time-reversal symmetry and provides the possibility to observe the various Quantum Hall phenomena in this pseudomagnetoexciton system. Our study poses a fundamental problem of the quantum Hall effect for composite particles and paves the way for quantum Hall physics of pseudomagnetoexcitons.
Sunanda P. Koduvayur
,Yuli Lyanda-Geller
,Sergei Khlebnikov
.
(2010)
.
"Effect of strain on stripe phases in the Quantum Hall regime"
.
Leonid Rokhinson
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا