Do you want to publish a course? Click here

Probing non-Gaussianities on Large Scales in WMAP5 and WMAP7 Data using Surrogates

135   0   0.0 ( 0 )
 Added by Christoph Raeth
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Probing Gaussianity represents one of the key questions in modern cosmology, because it allows to discriminate between different models of inflation. We test for large-scale non-Gaussianities in the cosmic microwave background (CMB) in a model-independent way. To this end, so-called first and second order surrogates are generated by first shuffling the Fourier phases belonging to the scales not of interest and then shuffling the remaining phases for the length scales under study. Using scaling indices as test statistics we find highly significant signatures for both non-Gaussianities and asymmetries on large scales for the WMAP data of the CMB. We find remarkably similar results when analyzing different ILC-maps based on the WMAP five and seven year data. Such features being independent from the map-making procedure would disfavor the fundamental principle of isotropy as well as canonical single-field slow-roll inflation - unless there is some undiscovered systematic error in the collection or reduction of the CMB data or yet unknown foreground contributions.



rate research

Read More

We present a model-independent investigation of the WMAP data with respect to scale- dependent non-Gaussianities (NGs) by employing the method of constrained randomization. For generating so-called surrogate maps a shuffling scheme is applied to the Fourier phases of the original data, which allows to test for the presence of higher order correlations (HOCs) on well-defined scales. Using scaling indices as test statistics we find highly significant signatures for non-Gaussianities when considering all scales. We test for NGs in the bands l = [2,20], l = [20,60], l = [60,120] and l = [120,300]. We find highly significant signatures for non-Gaussianities and ecliptic hemispherical asymmetries for l = [2, 20]. We also obtain highly significant deviations from Gaussianity for the band l = [120,300]. The result for the full l-range can be interpreted as a superposition of the signatures found in the bands l = [2, 20] and l = [120, 300]. We find remarkably similar results when analyzing different ILC-like maps. We perform a set of tests to investigate if the detected anomalies can be explained by systematics. While no test can convincingly rule out the intrinsic nature of the anomalies for the low l case, the ILC map making procedure and/or residual noise in the maps can also lead to NGs at small scales. Our investigations prove that there are phase correlations in the WMAP data of the CMB. In the absence of an explanation in terms of Galactic foregrounds or known systematic artefacts, the signatures at low l must so far be taken to be cosmological at high significance. These findings strongly disagree with predictions of isotropic cosmologies with single field slow roll inflation. The task is now to elucidate the origin of the phase correlations and to understand the physical processes leading to these scale-dependent non-Gaussianities - if systematics as cause for them must be ruled out.
We demonstrate the feasibility to generate surrogates by Fourier-based methods for an incomplete data set. This is performed for the case of a CMB analysis, where astrophysical foreground emission, mainly present in the Galactic plane, is a major challenge. The shuffling of the Fourier phases for generating surrogates is now enabled by transforming the spherical harmonics into a new set of basis functions that are orthonormal on the cut sky. The results show that non-Gaussianities and hemispherical asymmetries in the CMB as identified in several former investigations, can still be detected even when the complete Galactic plane (|b| < 30{deg}) is removed. We conclude that the Galactic plane cannot be the dominant source for these anomalies. The results point towards a violation of statistical isotropy.
108 - Didam Duniya 2019
The beyond-Horndeski gravity has recently been reformulated in the dark energy paradigm - which has been dubbed, Unified Dark Energy (UDE). The evolution equations for the given UDE appear to correspond to a non-conservative dark energy scenario, in which the total energy-momentum tensor is not conserved. We investigate both the background cosmology and, the large-scale imprint of the UDE by probing the angular power spectrum of galaxy number counts, on ultra-large scales; taking care to include the full relativistic corrections in the observed overdensity. The background evolution shows that only an effective mass smaller than the Planck mass is needed in the early universe in order for predictions in the given theory to match current observational constraints. We found that the effective mass-evolution-rate parameter, which drives the evolution of the UDE, acts to enhance the observed power spectrum and, hence, relativistic effects (on ultra-large scales) by enlarging the UDE sound horizon. Conversely, both the (beyond) Horndeski parameter and the kineticity act to diminish the observed power spectrum, by decreasing the UDE sound horizon. Our results show that, in a universe with UDE, a multi-tracer analysis will be needed to detect the relativistic effects in the large-scale structure. In the light of a multi-tracer analysis, the various relativistic effects hold the potential to distinguish different gravity models. Moreover, while the Doppler effect will remain significant at all epochs and, thus can not be ignored, the integrated Sachs-Wolfe, the time-delay and the potential (difference) effects, respectively, will only become significant at epochs near z=3 and beyond, and may be neglected at late epochs. In the same vein, the Doppler effect alone can serve as an effective cosmological probe for the large-scale structure or gravity models, in the angular power spectrum - at all z.
We present a model-independent method to test for scale-dependent non-Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate data sets are generated, in which the power spectrum of the original data is preserved, while the higher order correlations are partly randomised by applying a scale-dependent shuffling procedure to the Fourier phases. We apply this method to the WMAP data of the cosmic microwave background (CMB) and find signatures for non-Gaussianities on large scales. Further tests are required to elucidate the origin of the detected anomalies.
136 - Didam Duniya 2015
The observed galaxy power spectrum acquires relativistic corrections from lightcone effects, and these corrections grow on very large scales. Future galaxy surveys in optical, infrared and radio bands will probe increasingly large wavelength modes and reach higher redshifts. In order to exploit the new data on large scales, an accurate analysis requires inclusion of the relativistic effects. This is especially the case for primordial non-Gaussianity and for extending tests of dark energy models to horizon scales. Here we investigate the latter, focusing on models where the dark energy interacts non-gravitationally with dark matter. Interaction in the dark sector can also lead to large-scale deviations in the power spectrum. If the relativistic effects are ignored, the imprint of interacting dark energy will be incorrectly identified and thus lead to a bias in constraints on interacting dark energy on very large scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا